
<

ANL-7690

argonne Bational laboratorg
A TRANSFORMATIONAL COMPONENT

[FOR PROGRAMMING LANGUAGE GRAMMAR

by

James M. Boyle

The facilities of Argonne National Laboratory are owned by the " " ' f ^ ^^f^^^^^^"
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. A ' ° - - E - J 8 y
Commission, Argonne Universities Association and The University of Chicago, '^^J''^J"^^_
employs the staff and operates the Laboratory in accordance with polices and programs forma
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
University of Texas
Washington University
Wayne State University
The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Governnnent sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with r e
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B, Assumes any liabilities with respect to the use of, or for damages r e
sulting fronn the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any infornnation pursuant to his employment or contract with the Commission,
or his employnnent with such contractor.

Printed in the United States of America
Available from

Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce

Springfield, Virginia Z2^5l
Price: Printed Copy $3.00; Microfiche $0.65

ANL-7690
Mathematics and Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

A TRANSFORMATIONAL COMPONENT
FOR PROGRAMMING LANGUAGE GRAMMAR

by

James M, Boyle

Applied Mathematics Division

Based on a thesis submitted in
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

in the Graduate School of
Northwestern University

July 1970

TABLE OF CONTENTS

Page

ABSTRACT 5

1. Introduction 7

1.1. Informal Introduction to Intra-Grammatical Transformations. . 9

1.1.1. Elementary Intra-Grammatical Transformations 15

1.1.2. Sequencing Rules for Intra-Grammatical

Transformations 22

1.1.3. Complex Intra-Grammatical Transformations:

Indefinites 32

1.1.4. Complex Intra-Grammatical Transformations:

Subtransformations AO

1.2. Relation of Intra-Grammatical Transformations to Previous

Work 46

2. Intra-Grammatical Transformations 49

«

2.1. Notation and Definitions 50

2.1.1. Elementary Objects, Productions, and Grammars 53

2.1.2. Parse Trees 55

2.2. Syntax of Intra-Grammatical Transformations 58

2.2.1. Abstract Form of Intra-Grammatical Transformations. . 59

2.2.2. Concrete Form of Intra-Grammatical Transformations. . 70

2.3. Semantics of Intra-Grammatical Transformations 73

2.3.1. Environment of an Intra-Grammatical Transformation. . 74

2.3.2. Predicates Defining the Semantics of Transformations. 80

2.3.3. Uniqueness of the Transformed Parse Tree 89

2.4. Generative Power of Intra-Grammatical Transformations 97

2.5. A Computer Implementation of Intra-Grammatical

104

Transformations

2.5.1. Functions for Matching

2.5.2. Functions for Changing
1 1 Q

2.5.3. Functions for Sequencing

3. Applications of Intra-Grammatical Transformations 123

3.1. Transformations for Identifier Denotation 124

3.1.1. Theory of Identifier Denotation 125

3.1.2. The Identifier Denotation Transformation Set. . . . 131

3.2. Transformations for For Statement Optimization 149

3.2.1. Theory of For Statement Optimization 152

3.2.2. The For Statement Optimization Transformation Set . 157

4. Discussion and Conclusion 179

4.1. Comments on the Definition of Intra-Grammatical

Transformations 180

4.2. Possible Extensions to Intra-Grammatical Transformations. . 183

4.3. Other Applications of Intra-Grammatical Transformations . . 186

4.4. Conclusion 188

5. Bibliography ig^

6. Appendices I95

6.1. Grammar for Transformational Examples 196

6.2. Identifier Denotation Examples 202

6.3. For Statement Optimization Examples 215

ACKNOWLEDGEMENTS ' 249

A TRANSFORMATIONAL COMPONENT FOR

PROGRAMMING LANGUAGE GRAMMAR

By

James M. Boyle

ABSTRACT

The possibility of adapting the linguistic concept of transforma

tional grammar for use with computer programming languages is

investigated, and a formal definition and computer implementation of

transformations are described. Two rather extensive examples of the

usefulness of transformations as a definitional tool for programming

languages are given.

A transformation consists of two patterns which describe tree

structures in a context free phrase structure grammar. If the deriva

tion tree of a string in the language of the grammar matches the first

pattern, the string is to be transformed in a manner described by the

second pattern. In the programming language adaptation of transfor

mations, the transformed string is required to be a string in the same

language as the original string, hence these transformations are called

Intra-Grammatical Transformations (IGTs). In addition to terminal and

nonterminal symbols of the grammar, patterns may contain "free symbols",

which match any zero or more parts of a tree up to a match of the next

non-free symbol in the pattern. The second pattern of an IGT may

contain subtransformations, which are applied during construction of

the transformed string and may employ items matched in the transforma

tion containing them. Extensive built-in rules for controlling the

sequence of application of groups of IGTs are also provided.

(1)

1. Introduction

During the past decade, one of the most significant problems in

the theory of programming languages has been the search for suitable

formalisms for programming language definition. Early success in

the definition of syntax was achieved with the use of Backus-Naur

Form grammar to define the syntax of Algol 60, but the development of

a formalism for the definition of semantics has proceeded much more

slowly, although its outlines are now becoming discernible.

A somewhat similar situation has existed in linguistics, where

context free phrase structure grammars (later shown equivalent to BNF)

were successfully used as the major component of grammars describing

parts of the syntax of natural languages. To extend the descriptive

power of these grammars, Chomsky introduced the transformational com

ponent. Productions in this new component, called transformations,

are used to define certain semantically equivalent variations in the

surface structure of sentences generated by the phrase structure com

ponent of the grammar.

The equivalence of BNF and context free grammar suggests the

possibility of a programming-language analog for transformational

grammar, which would be useful in defining those parts of a programming

language which lie athwart the boundary between syntax and semantics:

that is, those aspects which may be defined in terms of global changes

in the form of a program which do not affect its meaning.

(1)

The goal of this investigation, then, is threefold: to show

that transformational grammar can indeed be adapted for use with

programming languages; that it can conveniently describe certain

features of programming languages; and that a system for transforma

tional grammar can be implemented on a computer so that such definitions

can be tested.

(1 .1)

1.1 Informal Introduction to Intra-Grammatical Transformations

This section is a step-by-step introduction to the transforma

tional system for programming languages. It is intended to provide

an intuitive understanding of the system which will be of assistance

in following the rather complex formal definition given in section

2. The development proceeds by posing a sequence of increasingly

sophisticated programming-language definitional problems and expounding

transformational solutions to them; the discussion of these solutions

introduces aspects of the notation and semantics for various parts

of the transformational system. Throughout these discussions many

italicized terms are defined informally (often by context) ; formal

definitions of most of them are to be found in later sections.

All of the example transformations in this section define aspects

of the semantics of for statements in Algol 60. Many of them have

direct counterparts among the for statement optimization transforma

tions discussed in section 3.2; if a few of the remainder seem

contrived, it is the result of a desire to present a unified set of

examples.

Because the transformational system for programming languages

is strongly rooted in the concept of transformational grammar as used

in linguistics, I will first discuss the linguistic concept of trans

formational grammar briefly, noting some similarities and differences

Familiarity with the Revised Report on Algol 60 [30] is assumed. A
slightly modified Algol syntax (used for the examples of section 3)
is included as section 6.1.

10 (1.1)

between it and the transformations introduced here.

As mentioned earlier, the concept of transformational grammar

was introduced by Chomsky in terms of a transformational component

to supplement the phrase structure component of natural language

grammars. The transformational component makes two important contri

butions to the elegance and simplicity of a natural language grammar:

it largely overcomes the inadequacy of phrase structure grammars alone

for generating natural languages, while still permitting retention

of the relatively simple phrase structure component of the grammar;

and it unifies the description of groups of related (usually semanti

cally equivalent) constructions (e.g., the active and passive forms

of a sentence) by permitting the phrase structure component to generate

but a single parse tree, or deep structure, for the group, with

differences in surface structure among members of the group being

accounted for by the transformational component.

As used in natural language grammars, a transformational produc

tion consists of two principal parts: the structural description

(SD) and the structural change (SC). To these are sometimes added

certain additional restrictions, such as equality restrictions. The

structural description is a sequence of terminal and nonterminal

symbols of the phrase structure grammar; if the parse tree of a

particular sentence in the grammar is described by the SD (essentially,

if a line can be drawn in the parse tree through the sequence of nodes

given by the SD without cutting any branches of the parse tree) the

transformation is said to apply. If a transformational applies, the

(1.1) 11

structural change is interpreted as describing (by an obvious use of

subscripted variables) a rearrangement of the terminal strings of

the subtrees matched by symbols in the SD. Structural descriptions

and structural changes may also contain variable (or indefinite)

symbols, which match any zero or more nodes up to the first occurrence

of the following definite symbol.

Perhaps the most classic linguistic transformation is the passive

transformation for English described by Chomsky (quoted in Bach [2],

p. 62). It is*.

Passive, optional:

Structural description: NP - Aux - V - NP ^ tr

Structural change: X - X - X - X

-«- X^ - X + fee + en - X - ij/ + X

or, in a slightly more economical notation:

NP - Aux - V - NP' ->• NP' - Aux -I- be + en - V - fcu + NP
tr . tr ^

This transformation may (optionally) be applied to the parse tree

(assuming a suitable phrase structure grammar) of an English sentence

in the active voice to produce its passive counterpart. For example,

consider the parse tree:

Here "-" denotes concatenation of the strings represented by non
terminal symbols; "+" denotes concatenation of terminal symbols or
of a terminal symbol and the string represented by a nonterminal
symbol.

12 (1.1)

-- NP-

Past

NP

that is. Bill hit John. The dashed line indicates that the passive

transformation does indeed apply, and the structural change specifies

that the corresponding passive sentence is obtained by interchanging

the strings represented by the first and fourth symbols of the match and

inserting some terminal symbols, giving:

John + Past + fce + en + hit + by + Bill

i.e., John was hit by Bill. On the other hand, for the tree:

auay

(1.1) 13

no match is possible with the SD of this transformation, and it does

not apply.

The above discussion has carefully avoided the question of

assigning a parse tree to the transformed sentence, which obviously

would be required if it were necessary to apply another transforma

tion to it. This is still somewhat an open question and has not been

treated adequately in the open literature. (The principal discussion

is in unpublished notes of Chomsky. Bach [2] provides a brief intui

tive discussion, and Petrick [31] discusses the problem from the

analytic, rather than generative, point of view.)

In adapting the concept of transformational grammar to programming

languages, I have overcome the difficulty of specifying the parse tree

for the transformed string by viewing the written, or concrete, forms

of the SD and SC of a transformation as convenient representations for

their abstract forms, which are tree structures (sd and sc trees)

similar to parse trees. To apply such a transformation its sd tree

is matched against the (upper part of the) parse tree to be trans

formed, and if it matches, the sc tree is used to construct the (upper

part of the) parse tree of the transformed string. Suitable restric

tions on the sc tree insure that the transformed string has a parse

tree in the same grammar as the original string, hence the name intra-

grammatical transformations (IGTs). Transformations constructed in

this manner are also much more nearly invertible (e.g., for use in

generation rather than analysis) than those customarily employed in

linguistics.

14
(I.I)

To introduce the notation for the concrete forms of IGTs, I will

cast the above passive transformation as an IGT; its interpretation

remains unchanged:

S{'SD'

NP"1" Aux"l" V "1" NP"2"
tr

NP"2" Aux"I" be en V "1" hv NP"1"
tr ^

'SC'}

(1.1.1) 15

1.1.1 Elementary Intra-Grammatical Transformations

To begin this discussion of elementary aspects of IGTs, con

sider the definition of the simplest form of for statement in Algol

60, i.e., a for statement whose <for list> is simply an <arithmetic

expression> (cf. sections 4.6.1 and 4.5.4.1 of the Revised Report

[30]). The concrete form of an IGT which converts this form of for

statement into its equivalent Algol statements is:

<statement>l

'SD'

for <variable> "1'' := <arithmetic expression> "1" do

<statement> "1"

=«>

begin <variable> "I" := <arithmetic expression> "1";

<statement> "1"

end ^

' SC'}

The structural description of this IGT is the string of symbols found

between the delimiters 'SD' and ==> while the structural change is

delimited by ==> and 'SC'. The initial symbol "<statement>" is the

dominating symbol of the IGT and indicates in an obvious manner the

head symbol of the sd tree and sc tree which constitute the abstract

The Algol 60 convention of delimiting comments by "comment" and ";"
is followed; comments may be inserted anywhere in a transformation.

16 (1.1.I)

form of the transformation. In this case, the sd tree (according to

the Algol 60 grammar) is:

<statement>

<for statement'

<statement>
"1''

for <variable>
"1"

<for list element>

<arithmetic expression'
"l"

The sc tree is constructed according to the grammar in a similar

manner, and begins:

<statement>

<unconditional statement'

<compound statement'

Throughout the remainder of this discussion transformations will

always be written in their concrete form, but it is important to keep

in mind that they are actually tree structures.

In the SC, the variable consisting of a symbol and its index

(e.g. <statement' "1") indicates where in the transformed tree the

(1 .1 .1) 17

subtree matched by an occurrence of that variable in the SD is to be

placed. For example, Transformation 1 applies to the statement:

for i := 2 do a[i] := 2xi (1)

to produce the statement:

begin i := 2;

a[i] := 2xi

end

(Tj^(l))

Note, however, that it does not apply to the statement:

for i := 1, 2 dô a[i] := 2xi (2)

since the <for list' subtree of this statement is:

:for list'

<for list'

<for list element'

<arithmetic expression'

<for list element'

<arithmetic expression'

v;hlch is not of the same form as the <for list' subtree of the sd tree.

A somewhat more interesting IGT is the one defining the meaning

of the for statement with a step-until element. Modifying the defini

tion of section 4.6.4.2 of the Revised Report slightly, this may be

written:

18 (1.1.1)

<statement'|

comment Transformation 2;

'SD'

for <variable' "1" := <arithmetic expression' "1" Bl^
• -, i'9" „nt-il <arithemtic expression' 3 <arithmetic expression' 2 until ^aiii-uc

do <statement' "1"

begin <variable' "1" := <arithmetic expression' "1";

on' "3"))
<label' "1":

1£ (<variable' "1" - (orithmetic expressl

X sign (orlthmetic expression' "2") ± 0 thê n

begin <statement' "1";

<varlable' "1" := <variable' "1"

+ (<arithmetic expression' "2");

go to <label' "1"

end

end

'SC'}

(This transformation represents a "literalist" interpretation of

section 4.6.4.2. For others see [19,21].)

In addition to illustrating the use of different indices to dis

tinguish between occurrences of the same non-terminal symbol, this

transformation also introduces the notion of generable symbol. A

generable symbol is a variable, such as <label' "1" in Transformation

2, which appears in the SC of a transformation but not in the SD. The

use of such a variable in the SC occasions the generation of a subtree

headed by that symbol, which is then associated with that variable just

as if it had occurred in the SD. Of course, in this example, care must

be taken to generate a <label' which does not occur elsewhere in

(1.1.1) 19

the program being transformed.

Transformation 2 applied to the string:

for i := 1 step 2 until n do^ a[i] := 2xi (3)

transforms it into:

begin i := 1;

label7:

if (i - (n)) X sign (2) <_ 0 then (T2(3))

begin a[i] := 2xi;

i := i + (2);

go to label?

end

end

Now one may very well complain that the transformed statement

in the above example is unnecessarily complicated, even though this

complication is required in the transfiormation of:

for i := 0 step j until k do

begin a[i] := 2xi; (4)

j := -2xj;

k := -k

end

(which is presumably to be executed for i = 0, -2, +2, -6 when

initially j = 1, k = 6). More appropriate for (3) would be:

20
(1.1.1)

<statement'|

comment Transformation 3;

'SD'

for <variable' "1" := <arithmetic expression' "1" ste£

<unsigned integer' "1" until <arithmetic expression' "2" do

<statement' "1"

begin <variable' "1" := orithmetic expression' "1";

<label' "1":

il <variable' "1" .< <arithmetic expression' "2" Ihen

begin <statement' "1";

<variable' "1" := <varlable' "1" + <unslgned integer' "1";

go to <label' "1"

end

end

'SC'}

The result of Transformation 3 applied to (3) is:

begin i := 1;

labels:

if i ĵ n then

begin a[i] := 2xi; (1^(3))

1 := 1 + 2;

go to labels

end

end

while it does not apply to (4), since j is not an <unsigned integer'.

The introduction of Transformation 3 raises two questions: When

two or more transformations are present, in what order should they

be applied? What further improvements can be made in the transformed

(1.1.1) 21

<statement' for simple for statements like (3)? The first of these

questions is discussed in the following section; the other is dis

cussed in section 1.1.3.

22 (1.1.2)

1.1.2 Sequencing Rules for Intra-Grammatical Transformations,

.... ^. 1 1 1 t-he. niie<;tion of the order For Transformation 2 and 3 of section 1.1.1 the quesciou

in which they should be applied can be answered quite easily: apply

Transformation 3 and then Transformation 2, since Transformation 3 applies

to a more restricted class of statements than does Transformation 2. Thus

for statement (3), Transformation 3 would apply, and clearly Transformation

2 will not apply to T (3), whereas for statement (2), Transformation 3

will not apply, permitting the application of Transformation 2. A further

example will illustrate that this simple sequencing rule must be extended

in order to be useful, however.

Consider constructing transformations to define the semantics of

multiple <for list element's. A straightforward solution to this problem

is to replace a for statement having n <for list element's by a compound

statement consisting of n for statements, the i of which contains only

the i <for list element' of the original (cf. [6]). Such an approach

Involves n replications of the controlled statement, however, and in

practice it is usually more efficient to construct a procedure from the

controlled statement and call it in each of the n for statements (cf.

Grau, Hill, and Langmaack [15], p. 96). The following transformations

express this definition;

(1.1.2) 23

<statement'|

comment Transformation 4.1;

•SD'

for <variable' "1" := <for list' "1", <for list element' "1" do

<procedure statement' "1"

begin for <variable' "1" := <for list' "1" do

<procedure statement' "1";

for <variable' "I" := <for list element' "1" dô

<procedure statement' "1"

end

'SC

comment Transformation 4.2;

'SD'

for <variable' "1" := <for list' "1", <for list element' "1'̂ dô

<statement' "1"

begin procedure <identifier' "1"; <statement' "1";

for <variable' "1" := <for list' "1" d£ <identifier' "1";

for <variable' ''1" := <for list element' "1" dô

<identifier' "1"

end

'SC'}

Note that when one or more transformations have the same dominating

symbol they are all written within the braces indicating the scope

of the dominating symbol. If the dominating symbol is, e.g.,

<statement', such a construction is called a <statement>-transformation

list.

Applied to (2) of section 1.1.1, the above transformations produce

the transformed statement:

(1.1.2)

begin procedure identifiers; a[i] := 2xi;

for i := 1 d£ identifiers

for i := 2 do identifiers

... •> (T, ,(2))
for i := 1 do identifiers; 4.2

end

However, consider:

for i := 1, 2, 3 do P(i)

Transformation 4.1 applies to give:

(5)

begin for i := 1, 2 d£ P(i);

for i ;= S do P(i) ^^4.1^^^^

end

Clearly what is necessary to complete the transformation of (T^ ^(5))

is to require the (recursive) reapplication of Transformations List

4, i.e., it must be reapplied to any <statement's introduced as

a result of transformation. (In practice, it is efficient to do

this during the construction of the parse tree specified by the SC.)

Then (5), when fully transformed, becomes:

begin

begin for i := 1 ̂ P(i);

for i := 2 do P(i) (T^ ^(T^ ^^(5))

end;

for i := 3 do P(i)

end

The sequencing rule for a transformation list is thus: Attempt

to apply the transformations in order. If none applies, the result

is the original tree. If some transformation does apply, attempt

(1.1.2) 25

to apply the transformation list to all subtrees constructed during the

construction specified by the SC (i.e., apply the transformation

list recursively to the transformed parse tree). One should note

that this sequencing rule is essentially the appropriate generalization

for tree structures of the sequencing rule for Markov algorithms

without terminal productions (cf. [29], chapter 5). Hov/ever, it

is perhaps most properly viewed as a consequence of the general rule

for the application of transformation lists to the parse tree of

a <program', discussed below.

It is reasonable that the application of, say, a <statement'-

transformation list to the parse tree of a <program' should mean

that the transformation list is applied to each subtree of the parse

tree headed by <statement'. However, for symbols such as <statement'

in Algol 60, where a <statement' subtree may itself contain <statement'

subtrees, it is necessary to specify whether transformation lists

are to be applied in a top-down or bottom-up traverse of the parse

tree.

There does not seem to be any strong theoretical reason to choose

one of these orders over the other, but it is an empirical fact (cf.

the examples of section 3) that bottom-up order is an advantageous

choice. This choice is perhaps pa;:tly justified because it enables

one to write, for example, a <for statement' transformation list

with the knowledge that when it applies to a <for statement' which

originally contained other <for statement's, the contained

<for statement's have already been fully transformed according to

(1.1.2)

that transformation list. Of course, for this statement to be valid,

the <for statement'-transformation list must be reapplied (in bottom-

up order) to any <for statement's generated in the construction of

the transformed subtree. This reapplication rule, together with

the fact that every transformed subtree is headed by the same symbol

as was the subtree it replaces, naturally results in what appears

to be generalized Markov sequencing of transformation lists.

The choice of bottom-up sequencing is also partly justified

by the fact that a kind of top-down sequencing rule applies to the

matching of indefinites (cf. section 1.1.3); thus both kinds of

sequencing are available. Finally, the choice of bottom-up sequencing

coincides with that recommended by Chomsky for natural language trans

formational grammars in his more recent thinking (cf. [10], pp. 134,

135, 143).

The solution of the following problem not only illustrates one

advantage of bottom-up sequencing, but also introduces the concept of

transformation set. Consider again Transformation 3 of section 1.1.1.

As written, it will not apply to:

for i := 1 step +2 until n d£ a[i] := 2x1 (6)

(because +2 is not an <unsigned integer') even though this statement

could just as well be transformed in a manner analogous to T (3) . One

possibility, of course, is to write another transformation identical

to Transformation 3 in every respect except with + <unsigned integer'

"1" replacing <unsigned integer' "1" in the SD.

(1.1.2) 27

A simpler and more general solution, however, is to combine the

following <simple arithmetic expression'-transformation list:

<simple arithmetic expression'}

comment Transformation 5;

'SD'

+ <term' "1"

<term' "1"

'SC'}

with the <statement'-transformation list containing Transformation 3.

Such a group of one or more transformation lists, no two having the

same dominating symbol, is called a transformation set. The sequenc

ing rule is then modified to read as follows: Given a transformation

set and the parse tree of a <program', attempt to apply the transfor

mation set (recursively) to each subtree of the parse tree, traversed

in bottom-up, left-to-right order. By Application of a transformation

set to a subtree of a parse tree is meant: If the transformation set

contains a transformation list whose dominating symbol is the same as

the head symbol of the subtree, apply that transformation list to the

subtree; otherwise do nothing. (Note that the order of the transforma

tion lists comprising a transformation set is immaterial; this is

reflected by the name "transformation set". The name "transformation

list", on the other hand, reflects the significance of the order of

the transformations comprising it.)

The bottom-up sequencing rule for transformation sets thus

28 (1.1.2)

guarantees that by the time Transformation 3 is applied to (6) , the

step element +2 will have been replaced by simply 2.

There remains one further combination of transformations to be

defined: the transformation set sequence. As its name implies, it

is a sequence of transformation sets. The rule for applying a trans

formation set sequence to a <program' parse tree is quite simple:

Apply the first transformation set of the sequence to the parse tree

(according to the rule given above), and then apply each succeeding

transformation set to the transformed <program' parse tree produced

by its predecessor; the result of applying the sequence is the trans

formed <program> parse tree produced by the last transformation set.

An example of the use of transformation set sequences is the sequence

consisting of the Identifier Denotation Transformation Set and the

For Statement Optimization Transformation Set described in section 3.

To help the reader verify his understanding of the concepts

introduced so far, I conclude this section with the description of a

transformation set sequence (consisting of a single <statement'-

transformation list) which, applied to a <program' parse tree, com

pletely eliminates all for statements in it, substituting for them

their definitions in terms of simpler Algol statements (without,

however, making any attempt at optimization):

(1.1.2) 29

}<statement>}

comment Transformation 6.1. (This is transformation 2);

'SD'

for <variable' "1" := <arithmetic expression' "1" step

<arithmetic expression' "2" until <arithmetic expression' "3"

<otatement' "1"

begin <variable' "1" := <arithmetic expression' "1";

<label' "1":

if (<variable' "1" - (<arithmetic expression' "3"))

X sign (<arithmetic expression' "2") <_ 0 then

begin <statement' "1";

<variable' "1" := <variable' "1"

+ (<arithmetic expression' "2");

go to <label' "1"

end

end

'SC

comment Transformation 6.2; ,

'SD'

for <varlable' "1" := <arithmetic expression' "1"

while <Boolean expression' "1" do

<statement' "1"

begin

<label' "1": <variable' "1" := <arithmetic expression' "1";

if <Boolean expression' "1" then

begin <statement' "1";

go to <label' "1"

end

end

'SC

30 (1.1.2)

comment Transformation 6.3. (This is Transformation 1) ;

'SD'

for <varlable' "1" := <arithmetic expression' "1" do

<statement' "1"

begin <variable' "1" := <arithmetlc expression' "1":

<statemunt' "1"

end

'SC

comment Transformation 6.4. (This is Transformation 4.1);

'SD'

for <varlable' "1" := <for list' "1", <for list element' "1" ^

<procedure statement' "1"

begin for <varlable' ''1" := <for list' "1" do

<procedure statement' "1";

for <variable' "1" := <for list element' "1" do

<procedure statement' "1"

end

'SC'

"̂ """"̂ "t Transformation 6.5. (This is Transformation 4.2);

'SD'

for <variable' "1" := <for list' "1", <for list element' "1" do

<statement' "1"

begin procedure <identifier' "1"; <statement' "1";

for <variable' "1" := <for list' "1" do <identifier' "1";

for <variable' "1" := <for list element' "1" do

<identifier> "1"

end

'SC'}}

(1.1.2) 31

One may verify that application of this transformation set sequence to

a <program> parse tree containing the <statement' subtree:

for i := 1, i+1 while a[i] ?* 0 dô

for j := 1 step 1 until n d£ b[i,j] := a[i]xj

y"̂ "̂ ^ (^6.2(^6.3(^.5(^6.l(^)))» =

begin procedure identifier2;

begin j := 1;

labell:

if (j-(n)) X sign (1) <_ 0 then

begin b [i , j] := a [i] x j ;

j := j + (l) ; go to l abe l 1

end

end;

begin i := 1; identifier2 end:

begin labels: i := i+1;

if a[i] ^ 0 then
%

begin identifier2; go to labelS end

end

end

(7)

32 (1.1.3)

1.1.3 Complex Intra-Grammatical Transformations: Indefinites

Consider again the second question raised at the end of section

1.1.1: What further improvements can be made in the transformed

statement for simple for statements? Most of the improvements one

would like to make consist of moving some computation which is invar

iant with respect to the loop to a position outside the loop, e.g.,

moving the calculation of the until-expression outside the loop.

The chief problem, then, is to determine invariance; this consists

primarily in checking that the computation does not contain the loop

variable, nor a variable assigned in the loop, and that the loop

contains no procedure calls, etc., which could result in "hidden"

changes in variables in the computation being checked (cf. section

3.2 for a more detailed discussion of this problem).

Such checking operations require some convenient means of search

ing a subtree for any occurrence of some other (usually previously

matched) subtree. To enable IGTs to express these searches, indefinite

nodes, or indefinites, are introduced. Consider the problem of

searching the until-expression of a fo£ statement for an occurrence

of the loop variable; using an indefinite this may be expressed:

<statement'}

comment Transformation 7;

'SD'

for <variable' "1" := <arithmetic expression' "1"

step <arlthmetic expression' "2" until

<arithmetic expression' "3" (? <variable' "1" ? }

(1.1.3)

do <statement' "1"

comment Same SC as Transformation 2;

•sc}

Here <arithmetic expression' "3" is an indefinite, and has an indefi

nite list consisting of { ? <variable' "1" ? }. The symbol "?"

is called the free symbol. When used in the SD of a transformation,

a free symbol matches that part of a subtree (possibly nothing at

all) up to an appropriate occurrence of the next non-free symbol.

When used in the SC of a transformation a free symbol simply acts

as a placeholder for the part of the tree in matched in the SD.

Three obvious restrictions are placed an indefinites: (1)

no two free symbols may be adjacent, since there would then be no

way to determine where one ended and the next began; (2) if a given

variable is indefinite in the SC, it must be indefinite exactly once

in the SD, to insure that the part of the tree matched by the free

symbols can be found; and (3) the head symbols of the subtrees and

the free symbols in the indefinite lists must be the same, and occur

in the same order, in the SD and SC, to insure that a correct tree

is obtained when copying the indefinite.

Non-indefinite lists, which contain no occurrences of "?", are also
permitted, e.g.,

<subscript expression' "1" {<unsigned integer' "1" x <variable' "1"

<adding operator' "1" <unsigned integer' "2"}

They are useful for giving names to subtrees which must have a certain
substructure, and for obtaining compliance with restriction (3) of the
following paragraph.

(8)

34 (1.1.3)

Some further examples will help to illustrate the meaning of

indefinites. It should be clear that Transformation 7 applies to:

for i := 1 step 1 until 10-i dô

a[i] := 2x1

and also to:

for i := 1 step 1 until nxl-7 do

a[i] := 2x1 (9)

but does not apply to, e.g., (S) or (4) of section 1.1.1. (Note

that when the same variable occurs more than once in the SD of a

transformation all occurrences must match equal subtrees.)

Had the indefinite of Transformation 7 been written:

<arithmetic expression' "3" { ? <variable> "1"}

it would apply to (S) but not (9), i.e., if there is no free symbol

to the right (left) of a non-free symbol, the subtree matched by

the non-free symbol must not have any subtrees to the right (left)

of it. Similarly, two adjacent non-free symbols must match

"adjacent" subtrees (i.e., there must be no subtrees between them).

For example, the transformation:

(1.1.3)

<statement'}

comment Transformation 8;

'SD'

for <variable> "1" := <arithmetic expression' "1" step

<arithmetic expression' "2" until <arithmetic expression' "3"

d£

<statement' "1" (? <variable' "1" := ? }

comment Same SC as Transformation 2;

'SC'}

applies to:

for i := 1 step 1 until n do

begin a[i] := 2x1; (10)

i := i+1

end

but not to:

for i := 1 step 1 until n ̂ (11)

begin a[i] := 2x1 end

A more complex use of indefinites is illustrated by a trans

formation which determines whether the until-expression of a for

statement contains a variable assigned in the controlled statement:

36 (1.1.3)

<statement'l

comment Transformation 9;

'SD'

for <variable' "1" := orithmetic expression' "1" £te£

<arithmetic expression' "2" until

orithmetic expression' "3" (? <identifier' "1" ? }

do <statement' "1"

{ ? <variable' } <identifler' "1" ? } := ' J

comment Same SC as Transformation 3;

'SC'}

In this transformation the success or failure of the match of

<identifier' "1" in the second indefinite influences the match of

<ldentifier' "1" in the first indefinite.

Transformations 7, S, and 9 are but a few of several which are

required to determine whether a for statement can contain invariant

calculations. Each of these transformations has the property that if

it applies to a for statement, certain calculations are not invariant

and the for statement is to be transformed in the most general way;

thus all of the transformations have essentially the same SC.

l>Jhen this is the case, the transformations are simplified by

having each of them mark the for statement in a way which prevents

the transformation from reapplying; a single transformation placed

late in the list then converts all marked for statements to the general

form described by Transformation 2. Perhaps the most convenient

markers are obtained by introducing "synonyms" for terminal symbols;

in this case fori, for2, etc., are appropriate. This method is

(1.1.3)

especially flexible if a name can be given to the whole collection

of synonyms for a given terminal symbol, either by replacing, say,

the symbol for in the Algol grammar by <for symbol' and adding a

production <for symbol' ;:= for | fori | for2 or else by letting

an indexed terminal symbol in a transformation match either itself

or any of its synonyms; this latter approach is used in the trans

formations discussed in section 3. Using markers, the SC of Transfor

mations 7, 8, and 9 would be (T' T', and T'):

fori <variable' "1" := <arithmetic expression' "1" step

<arithmetic expression' "2" until <arithmetic expression' "3"

d£

<statement' "1"

while the beginning of the SD of Transformation 2' (which must occur

after Transformations 7', 8', and 9' in the list) would be:

<for symbol' <variable' "1" := ...

(or for "1" <variable' "1" := ..., if the second approach above is

employed).

Another use of a marker is illustrated by a transformation which

looks for a procedure or function procedure call anywhere in a for

statement after step:

38 (1.1.3)

<statement'|

comment Transformation 10;

'SD'

<for statement' "1"

{<for symbol' }for} <variable' "1" := <arithmetic expression' "1"

step ? <procedure identifier' "1" ?}

<for statement' "1"

{<for symbol' {fori} <variable' "1" := <arlthmetic expression' "1'

step ? <procedure identifier' "1" ?}

'SC'}

Note that Transformation 10 obeys restriction 3 mentioned earlier even

though for and fori differ, since in both cases the head symbol of the

subtree containing them is <for symbol'.

Transformation 10 applies to:

for 1 := 1 step f(x) until n d£

a[i] := 2x1 (12)

and

for i := 1 step 1 until n do

begin a[i] := 2x1; p(x,y,i) end (13)

among others.

If no transformation like 7', 8', 9' or 10 applies to a given for

statement, so that the until-expression is known to be invariant with

respect to the loop, it may be transformed according to Transformation

11 (which must, of course, precede Transformation 2'):

(1.1.3) 39

<statement'|

comment Transformation II;

'SD'

for <variable' "1" := <arithmetic expression' "1" step

<unsigned integer' "1" until <arithmetic expression' "2" d£

<statement' "1"

begin integer <identifier' "1";

<variable' "1" := <arithmetic expression' "1";

<identifier' "1" := <arlthmetic expression' "2";

<label' "1": i^ <variable' "1" <_ <ldentifier' "1" then

begin <statement' "1";

<varlable' "1" := <variable' "1"

+ <unsigned integer' "1";

go to <label' "1"

end

end

'SC'}

Any for statements with step-until elements to which Transformation 11 does

not apply would then be transformed by Transformation 2'.

The chief remaining class of computations some of which may be

invariant (or linear) with respect to the loop is the calculation of

subscripts; searching subscript expressions for occurrences of variables

assigned in the loop will be considered in the following section.

40 (1.1.4)

1.1.4 Complex Intra-Grammatical Transformations: Subtransformations

The last feature of IGTs remaining to be described is subtrans

formations (technically, subtransformation sequences) . As the name

implies, a subtransformation is basically a transformation which

occurs within the SC of another transformation. The use of subtrans

formations considerably increases the elegance of many transformational

definitions, as is perhaps best illustrated by the identifier denota

tion transformations described in section 3.1.

The simplicity and convenience of subtransformations derives

primarily from two aspects of their semantics: their ability to

employ indexed symbols matched in the SD (or generated in the SC)

of the transformation(s) in which they occur; and their more limited,

non-recursive sequencing rules. These concepts can be illustrated

by considering a transformation which examines the controlled statement

of a fo£ statement and marks all subscripted variables which contain

a variable assigned in the controlled statement by replacing " ["

with the marker "[":

(1.1.4)

<for statement'}

comment Transformation 12;

•SD'

for <variable' "1" := <for clause' "1" (? step ? } d£

<statement' "1"

{ ? variable "2" (<identifier> "1" ? }

<assign symbol' (:=} ? }

for <variable' "1" := <for clause' "1" d£

<statement' "1" { ? <variable' "2" <assign symbol' {..=} ?

}comment Transformation ll.A.l;

'SD'

<statement' "11"

{ ? <subscripted variable'

} <identifier' "2" <left bracket' }[} ?

<identifier' "1" ?] } ?

}

<statement' "11"

{ ? <subscripted variable' ,

{ <identifier' "2" <left bracket' {[,} ?

<identifier' "I" ?]) ?

}
'SC

)
'SC'}

In this transformation, the main transformation applies to any

for statement with a step-until element and at least one variable

followed by ":=" in its controlled statement, and in constructing

the transformed controlled statement, it marks that variable as

having been investigated by replacing ":=" by "..=". (Thus the

42 (1.1.4)

main transformation eventually will cease to apply.) Furthermore,

after the transformed controlled statement has been constructed,

the subtransformation is applied to it. Since the subtransforma

tion has available to it the identifier of the variable assigned

(<identifier' "1"), it can mark any subscripted variables containing

that identifier in their <subscript list'. Insertion of the marker

"[." not only guarantees termination of the subtransformation but

also identifies the subscripted variable as non-linear and non-constant

to a later optimizing transformation (cf. section 3.2). Note that

the construction:

<variable' "2" {<identifier' "1" ? } :=

is used to determine <identifier' so that the identifier of a sub

scripted variable, rather than the entire subscripted variable, is

obtained.

Consider the statement:

for i := 1 step 1 until n do

begin j := n-i; ^^^

c[a[k]] := i;

a[i] := b[j]

end

One complete application of Transformation 12 produces (Ti2(14)):

(1.1.4)

for i := 1 step 1 until n do

begin j ..= n-i;

c[a(k]] := i;

a[i] := b[^j]

end

(Here <identifier' "1" was "j".) The transformation reapplies,

giving (1^^(T^^(U)):

for i := 1 step 1 until n do

begin j ..= n-i;

c[a[k]] ..= i;

a[i] := b[^j]

end

(In this case, <identifier' "1" was "c", and the subtransformation

did not apply.) Finally, it applies a third time to give (T (T „

a^^iU)))):

for i := 1 step 1 until n d£

begin j ..= n-i;

c[^a[k]] ..= i;

a[i] ..= b[^j]

end

Thus c[a[k]] and b[j] have been marked as neither invariant nor

linear.

Note that the dominating symbol for Subtransformation 12.A.1 is

<statement' "I"; the general rule for determining the dominating

symbol of a subtransformation is that it is the symbol immediately

preceding the " { " symbol introducing the subtransformation list,

44 (1.1.^)

un
less that symbol is " } " , in which event the dominating symbol is

the dominating symbol of the " } " symbol matching the " } " symbol.

In particular, one may have more than one subtransformation list

(i.e., a subtransformation sequence of length greater than one) with

the same dominating symbol. In this case the subtransformation lists

making up the sequence are applied one after another in exact analogy

to the rule for applying the transformation sets of a transformation

set sequence. The scope rules for indexed symbols in this case are

analogous to the scope rules for identifiers in Algol 60: a sub-

transformation "knows" all the indexed symbols in transformations

containing it, but, of course, it does not have access to those in

other subtransformations in its list or sequence (cf. sections 2.2.1

and 2.3.2).

The sequencing rules for subtransformation lists differ from

those for transformation lists in that a subtransformation list is

applied only to that subtree of the parse tree which is constructed

from its dominating symbol (i.e., no traverse is made of this subtree).

It continues to be applied to this subtree until no transformation

in the list applies. The reasons for adopting this sequencing rule

are most empirical; they are discussed further in sections 2.3.2

and 4.1. No further examples of subtransformations will be given

here, as the detailed examples of section 3 contain numerous appli

cations of them.

This discussion brings to a close the informal introduction

to intra-grammatical transformations. One should now be prepared

(1.1.4) 45

to study their formal definition in section 2, and to understand the

examples of section 3. Before the formal definition of IGTs is

introduced, however, their relation to earlier work will be briefly

discussed in the following section.

46 (1.2)

1.2 Relation of Intra-Grammatical Transformations to Previous Work

As discussed above, IGTs are based on natural language transfor

mational grammars, especially as defined by Chomsky [10, 11]. They

may thus be considered both in relation to work in linguistics on

transformational grammar, and in relation to previous similar work

in programming language theory.

Much of the research on transformational grammar in linguistics

has been concerned with its use as a tool for describing various

aspects of natural languages. This work is relevant to IGTs only

to the extent that it has provided feedback concerning the adequacy

of transformational grammar to its linguistic tasks; a number of

modifications suggested by this work are discussed in [10] .

There are, however, a few computer Implementations of transforma

tional grammars as used in linguistics. As mentioned above, Petrick

[31] has Implemented a transformational analysis system with the

goal of Inverting a transformational grammar in order to use it to

analyze the sentences it generates. Such a system immediately

encounters two problems: First, no general algorithm for inverting

transformations is known (cf. Hays [18], cha. 8). Second, it is

very difficult to assign sufficient tree structure to an input string

to determine when an inverted transformation applies, since the only

phrase structure grammar available to such a system is the one which

generates the "deep structure" of the strings, i.e., their tree

structure before any (generative) transformations have applied to

(1.2)

them. Petrick considers and rejects the introduction of a "covering

grammar" (essentially the intra-grammatical restriction imposed on

IGTs), since such a grammar is not usually available or derivable

for natural language transformational grammars, and attacks the

problem by alternating application of phrase-structure parsing and

transformational analysis. Unfortunately this technique is slow

and only applies to a subset of all transformational grammars.

Friedman [14] has also described a computer system for transfor

mational grammar. This system was designed with the goal of providing

the linguist with a comprehensive generative transformational system

which would assist him in formulating and "debugging" transformational

grammars for natural languages. Like IGTs, it is a generalization

and formalization of the concept of transformational grammar of

Chomsky [10]. Except for the introduction of some quite powerful

control mechanisms, most of the generalization has been introduced

to better adapt the system to its linguistic tasks and at present

has little application to programming languages. The basically genera

tive orientation of the system also limits its usefulness with pro

gramming languages, except perhaps for its intended use as a tool

to assist in the design of a (generative) grammar for a specific

language.

Several authors in the field of programming languages have

described systems similar to grammatical transformations, although

apparently no one has emphasized the analogy. These systems are

frequently described by the term "generalized Markov algorithms,"

48 (1.2)

since they typically employ the matching and sequencing rules for

Markov algorithms (cf. [29] for an introductory discussion of Markov

algorithms). Perhaps the most important among these systems are

those of Caracciolo (cf., for example [9]; the details of Caracciolo's

work have not been published in the open literature), de Bakker [4],

and Iturriaga [20]. These systems are described in section 3.2 of

a recent excellent survey article by de Bakker [3], and will not

be further described here. Iturriaga claims that his system differs

from the others in that the transformations operate on tree structures

(as do IGTs) rather than on strings. Three other systems incorporating

tree transformations but not discussed by de Bakker are those of

Mcintosh (not published; discussed informally by Brody [7]), Reynolds

[34], and Maruyama [24].

The system of IGTs introduced here differs from the above systems

in three principal ways: first, in the use of FREE symbols and the

method of matching indefinites in the SD and transmitting their tree

structure to the SC; second, in the introduction of subtransforma

tions and their scope rules; and third, in its emphasis on built-

in sequencing mechanisms rather than ad hoc methods, such as each

transformation explicitly nominating its successor. Furthermore, the

examples of IGTs discussed in section 3, especially the for state

ment optimization transformation set, represent new applications of

transformational methods to the description of programming languages.

(2)

2. Intra-Grammatical Transformations

Section 2 comprises the formal definition of intra-grammatical

transformations over a context free phrase structure grammar G, the

proof of a few theorems characterizing some formal properties of

these transformations, and the discussion of a computer implementa

tion of an intra-grammatical transformation system.

The formal definition of IGTs consists of a specification of

their syntax and semantics. The syntax specification describes both

the abstract form of IGTs—the tree structures which represent the

SDs and SCs of transformations—and the concrete form of IGTs—a

linear written representation of the abstract form. The semantic

specification describes the conditions under which a parse tree p_

is the result of applying a transformation to another parse tree p .

One should note that this semantic specification does not describe

how to compute p , but only how to deternfine whether p is the trans

form of p ; the LISP functions described in section 2.5 define the

computation of p, from p and the transformation.

The notation and some basic definitions used in defining the

syntax and semantics of IGTs will be introduced in the following sub

section. It also defines the parse trees which represent the programs

being transformed.

50 (2.1)

2.1 Notation and Definitions

The notation used to define the syntax and semantics of IGTs

is that of the "Method and Notation for the Formal Definition of

Programming Languages" [23], hereafter referred to as the "Vienna

Report." Familiarity with sections 1.3, 2, 3.1, 3.2, 4.4.3, and

4.4.5 - 4.4.7 of the Vienna Report is assumed in much of the follow

ing discussion.

The notation defined in the Vienna Report is basically an amalgam

of the conditional expressions of LISP [27] with notation from set

theory, symbolic logic, and arithmetic. It permits the formal defini

tion of a class of objects which may be either elementary or composite,

i.e., composed of one or more other composite or elementary objects.

Objects are defined by predicates (e.g. the predicates is-symbol

and is-prod of section 2.1.1); by convention all predicates are

given the prefix "is-". Access to the objects of which a composite

object is composed is by means of selector functions, or selectors

(e.g. the selectors s-symbol and s-defn of section 2.1.1); by conven

tion selectors are given the prefix "s-". To the extent that the

abstract syntax of a programming language can be identified with

a subclass of objects of this type, the notation and concepts of

the Vienna Report may be considered a generalization of McCarthy's

work on abstract syntax [25,26].

The notation and conventions of the Vienna Report are adopted

here verbatim, except for the following changes: Since the concept

of list is used frequently in the definitions that follow, it is

(2.1)

convenient to have a concise representation for the length function

of lists (cf. section 2.8.2 of the Vienna Report); for this the

absolute value symbol of mathematics is adopted, i.e., if is-llst(L)

then:

|L| = length(L)
Df

Also useful with lists is the iterated existential quantifier, defined:

The notation for conditional expressions (cf. section 1.3.1 of the

Vienna Report) whose conclusions e. are all predicates is extended

to include expressions of the form:

(...,(3x)[p.(x) •* e^(x)],...)

which is equivalent in meaning to:

(...,(3x)[p.(x)] -t (3x)[p.(x) A e.(x)],...)

Another notation used frequently in the definitions to follow is

a quantification over all selectors (cf. 2.1.2 (3) G-Parse Trees).

The Greek letters T and o (sometimes primed or subscripted) will

be used to represent such selectors; i.e., (^T)[...] is to be under

stood as an abbreviation for: (VT)[T£S*3 (...)], where S is the

set of all simple selectors used in the sequel (and S* is the set

of all simple and composite selectors including the identity selector).

Finally, in the definitions given here the symbol "A" will replace

52 (2.1)

the symbol "&" of the Vienna Report.

The remainder of this section and section 2.2.1 comprise the

definition of the objects which represent the abstract form of

programs (parse trees) and the abstract form of transformations

(pattern trees). For economy of notation the word "tree" will

be dropped from the predicates defining these objects, i.e., parse

trees will satisfy the predicate is-parse, etc.

To emphasize that parse trees and pattern trees may be adapted

for use with any context free phrase structure grammar G, and to

clarify which parts of their structure are Independent of G, their

definitions are given in two parts: first a grammar-independent

class of objects is defined (e.g., is-parse); then a consistency

condition relating this class of objects to a given grammar G is

defined (e.g. is-G-parse). Of course, only those elements of the

set is-parse which satisfy is-G-parse represent parse trees of

a grammar G.

The following subsection introduces the class of elementary

objects used in the remaining definitions and defines production

rule and grammar in a manner compatible with the notation of the

Vienna Report. Parse trees are then defined in section 2.1.2.

(2.1.1)

2.1.1 Elementary Objects, Productions, and Grammars

The set of elementary objects, EO, which will be used to define

parse trees and transformations is:

EO = is-symbol U is-index U (FREE} U S*

The sets is-symbol and is-index will not be further specified.

However, the elements of is-symbol will be related to the symbols

of a grammar in 2.1.1 (1) cfpsg. Indices and the element FREE occur

only in pattern trees, which are discussed in section 2.2.1, and

elements of S (compound selectors) occur only in the indefinite

skeletons of environment elements, discussed in section 2.3.1.

Before context free grammar can be defined, an object correspond

ing to a production rule must be introduced. Such an object is

called an abstract production and satisfies the predicate is-prodi

is-prod = (<s-symbol: is-symbol', <s-defn: Is-sym.bol-list')

(Recall that, by a convention of section 2.7 of the Vienna Report,

"is-symbol-list" denotes a (possibly empty) list of objects satisfying

the predicate "is-symbol".) The relation of abstract productions

to production rules written in, say, Backus-Naur Form (BNF) will

be clarified after definition of context free phrase structure

grammars.

54 (2.1.1)

Definition 2.1.1 (1) cfpsg

A context free phrase structure grammar (cfpsg) G is a four-

tuple consisting of three predicates and a symbol:

G = (is-G-nonterm, is-G-term, is-G-prod, i^)

where:

is-G-nonterm fl Is-G-term = }} (the empty set)

is-G-symbol = is-G-nonterm V is-G-term

is-G-symbol ^ is-symbol

is-G-prod(ii) 3 is-prod(Ti) A is-G-nontermos-symbol(Tr)

|s-defn(Ti) I
^ Et is-G-symbol<'elem(i) os-defn(Tr)

1=1

is-G-nonterm(f;)
s

The set is-G-nonterm is the set of nonterminal symbols of

G; is-G-term is the set of terminal symbols of G; is-G-prod is the

set of productions of G; and C is the starting symbol of G. If it

is a production of G, the concrete form (in BNF) of ir is given

(employing the notation introduced in section 2.2.2) by:

is-G-prod (n): R[ii] =' rep o s-symbol (TT) : : =

I s-defn(Ti) I
JUXT repoelem(i)os-defn(Tr)
i=l

The required relation between productions written in BNF and abstract

productions is thus established.

(2.1.2) 55

2.1.2 Parse Trees

The parse trees representing derivations (and subderlvations)

in the grammar G are defined in this section. The general class

of parse trees irrespective of a particular grammar G are defined

first.

Definition 2.1.2 (1) Parse Trees

A parse tree is an object satisfying the predicate is-parse:

is-parse = is-final-parse V is-prod-parse

is-final-parse = (<s-symbol: is-symbol')

is-prod-parse = (<s-symbol: is-symbol', <s-sub-llst: is-parse-list')

The definition of the consistency condition relating a parse

tree p to a specific cfpsg G is facilitated by defining a function

immed-prod which extracts what may be called the "Immediate production"

of p, i.e., the production which permits the derivation of s-sub-

llst(p) from s-symbol(p). The function immed-prod will later also

be applied to pattern trees; therefore its full definition for both

parse and pattern trees is given here. (The predicates for pattern

trees are defined in section 2.2.1.)

Definition 2.1.2 (2) Immediate Productions

The immediate production of a parse tree (or pattern tree) is

given by immed-prod(p), where is-parse(p) V is-pat(p):

56 (2.1.2)

immed-prod(p) =

(is-prod-parse(p) V is-prod-pat(p) •*

p(<s-symbol: s-symbol(p)' ,

|s-sub-llst(p) I
<s-defn: LIST s-symboloelem(i)oS-sub-list(p)') ,

1=1

is-final-parse(p) V is-f inal-pat(p) ^ p̂ , (<s-symbol: s-symbol(p)') ,

is-indef-pat(p) -• 0)

It should be clear that immed-prod satisfies:

is-prod-parse(p) V is-prod-pat(p) 3 is-prod(immed-prod(p))

In case p is a final parse (or pattern), immed-prod(p) is just the

symbol of p. This convention simplifies certain later definitions.

Now it may happen that if is-parse(p), and G is some cfpsg,

is-G-prod(immed-prod(p)). This observation is the basis for the

definition of the consistency condition relating parse trees to a

particular grammar G. (Recall that TES*, i.e., T ranges over all

simple and composite selectors, including the identity selector.)

Definition 2.1.2 (3) G-Parse Trees

Let G be a cfpsg. Then a G-parse-tree is a parse tree satisfying

the consistency condition is-G-parse(p):

is-G-parse(p) = is-parse(p)A

(VT)[(is-final-parse°T(p) ̂ is-G-termos-symboloi(p))

A(is-prod-parse°T(p) :D is-G-prod°immed-prod'>T(p))]

This concludes the definition of parse trees. One should note

(2.1.2) 57

that if is-G-parse(p) A s-symbol(p) = £; then p is a derivation tree

in G in the usual sense. Furthermore, the concrete representation

(cf. section 2.2.2) of p is a string in L(G), the language generated

by G.

58 (2.2)

2.2 Syntax of Intra-Grammatical Transformations

In this section the syntax of IGTs will be defined. The defini

tion consists of two main parts: the definition of the abstract form

of IGTs, and the definition of their concrete form. The definition

of the abstract form is further divided into the definition of

G-pattern trees (in a manner analogous to the definition of G-parse

trees), the definition of G-IGTs, and the definition of aggregates

of IGTs.

(2.2.1) 59

2.2.1 Abstract Form of Intra-Grammatical Transformations

Since the tree structures which are the abstract forms of the

SDs and SCs of transformations have many features in common, it is

convenient to define a single class of tree structures, the pattern

trees, of which both sd trees and sc trees are subclasses. This

approach clarifies both the similarities and differences between sd

trees and sc trees. Note that because the SC of a transformation

may contain subtransformation sequences, pattern trees must of

necessity contain them; they are defined in definition 2.2.1 (5).

Definition 2.2.1 (1) Pattern Trees

k pattern tree is an object satisfying the predicate is-pat:

is-pat = is-final-patV is-prod-patV is-indef-pat

is-final-pat = (<s-symbol: is-symbol',

<s-index: is-index Vis-U',

<s-subtrseq: is-subtrseq')

is-prod-pat = (<s-symbol: is-symbol>,

<s-lndex: is-index V is-f2',

<s-sub-list: is-pat-list',

<s-subtrseq: is-subtrseq')

Is-indef-pat = (<s-symbol: is-symbol',

<s-index: is-index V is-f̂ ',

<s-indef-list: is-pat-or-FREE-nlist',

<s-subtrseq: is-subtrseq')

is-pat-or-FREE = is-pat V is-FREE

There are thus three kinds of pattern trees. Final pattern trees

and production pattern trees are analogous to final parse trees and

60 (2.2.1)

production parse trees; indefinite pattern trees represent indefinites.

The suffix "-nlist" used in the definition is the same as the suffix

"-list," except that it indicates a non-empty list, i.e., is-indef-

pat(t) 3]s-indef-list(t)| ̂ 1. FREE is, of course, the free symbol.

An auxiliary function and predicate will simplify discussions

involving pattern trees. (They will also be applied to environment

elements, defined in section 2.3.1):

Definition 2.2.1 (2) Variable

The variable of a pattern tree (or environment element) is the

object composed of its symbol and index (if any), given by var(t) ,

where is-pat(t) V is-env-elet(t):

var(t) = p (<s-symbol: s-symbol(t)', <s-lndex: s-index(t)')

Definition 2.2.1 (3) Indexed

A pattern tree (or environment element) is said to be indexed

(or to have an indexed symbol) if it satisfies the predicate

is-indexed(t), where is-pat(t) V is-env-elet (t) :

is-indexed(t) =-iis-f2os-index(t)

Before the consistency condition for a pattern tree can be stated,

it is necessary to introduce some definitions pertaining to subtrans

formations. Since the consistency conditions for subtransformations

are a part of those for pattern trees and transformations, only the

(2.2.1) 61

general objects representing subtransformations will be defined now:

Definition 2.2.1 (4) Transformation

A transformation is an object satisfying the predicate is-tr:

is-tr = (<s-sd: is-pat', <s-sc: is-pat')

Definition 2.2.1 (5) Subtransformation Lists and Sequences

A subtransformation list is an object satisfying the predicate

is-subtrlist:

is-subtrlist = is-tr-list

A subtransformation sequence is an object satisfying the predicate

is-subtrseq:

is-subtrseq = is-subtrlist-list

The consistency condition for pattern trees can now be stated.

It is rather more complex than that for parse trees and consists ^

of five main parts. (For the definition of immed-prod see 2.1.2

(2) Immediate Production.)

62 (2.2.1)

Definition 2.2.1 (6) G-Pattern Trees

Let G be a cfpsg. Then a G-pattem tree is a pattern tree satis

fying the consistency condition is-G-pat(t):

is-G-pat(t) = is-pat(t) A

(VT)[(is-final-patoT(t) 3 is-G-symbol°s-symboloT(t))

A(is-prod-patoT(t) 3 is-G-prodoimmed-prod°T(t))

A(is-indef-paf.T(t) Z) is-G-indef•>T(t))

A(is-troT(t) 3 is-G-sdos-sdoT(t) A is-G-scos-scoT(t)

A s-symbol'>s-sdoT(t) = s-symbolos-scoT(t))

|s-subtrseqoT(t)|]elem(i)-s-subtrseqcT(t)|
A (is-patoT(t) 3 Et Et

1=1 j=l

s-symbolos-sdoelem(j)oelem(i)»s-subtrseqoT(t) =

s-symbol°T(t))]

is-G-indef(t) = is-G-nontermos-symbol(t)

|s-indef-list(t)|-1
A Et —1 (is-FREEoelem(i)os-indef-list(t)
1=1

A is-FREE•>elem(i+1) os-lndef-list(t))

is-G-sd(t) = is-G-pat(t) A (VT)[is-patoT(t)3^

|s-subtrseq''T(t) I = 0]

Is-G-sc(t) = is-G-pat(t)A

(VT) [(is-indexed<'T(t) 3 —i is-prod-patoT(t))

A (-iis-prod-patoT(t) 3 is-indexed'JT(t)

V is-G-term"s-symboloT(t))]

The following aspects of the definition of is-G-pat are note

worthy: Final patterns, unlike final parses, need not have as their

symbol a terminal symbol of G. The SD and SC of any transformations

occurring in a G-pattern tree (which must, of course, be in a sub-

(2.2.1) 63

transformation sequence) must have the same symbol, and the symbols

of all SDs of all subtransformations of all subtransformation lists

of a subtransformation sequence of a particular pattern subtree must

have the same symbol as that pattern subtree. The definition of

is-G-indef requires that the symbol of an indefinite be nonterminal,

and that no two free symbols occur adjacent to one another in the

indefinite list.

The predicate is-G-sd (the sd condition) characterizes the sub

class of pattern trees (the sd trees) which can represent the SD of

a transformation as those which do not contain any subtransformations.

The predicate is-G-sc (the sc condition), which characterizes the

so trees, is more complicated. It requires: all production pattern

trees must be unindexed; all indefinite pattern trees must be indexed

(since the symbol of an Indefinite may not be terminal); and all final

pattern trees either must be indexed or their symbol must be terminal.

These restrictions, together with those placed on transformations,

insure that the result of applying a transformation to a G-parse tree

is again a G-parse tree.

The consistency condition that a transformation must satisfy in

order to be an IGT will now be considered. It must guarantee that

when any transformation in the IGT applies, there is an "appropriate"

parse tree for every substitution called for by an indexed symbol

in the SC of the transformation. Appropriate parse trees can come

from three sources: from having been matched in the SD of the trans

formation, from having been generated (if the symbol is generable),

64

or

(2.2.1)

from having been matched or generated in a transformation containing

the transformation containing the symbol (if the symbol is in a

subtransformation). Thus the consistency condition for an IGT must

embody the scope rules for subtransformations, which make it quite

complex. Some additional nomenclature will simplify the discussion

somewhat.

A predicate characterizing the (possibly empty) subset of

is-G-symbol which is the set of generable symbols is required, and

this predicate is is-generable(V , where is-G-symbol(C) • The user of

the IGT system is assumed to provide, along with a transformation

set sequence, a function generated) and the predicate is-generable,

which characterizes the domain of generate. The only constraint

• c *

placed on generate is that it must satisfy :

is-generable(C) 3A(p)(is-G-parse(p) A s-symbol(p) = C) (generate(C))

The scope of a transformation can be characterized as follows:

Let the local variables of a transformation be the variables of all

Indexed patterns remaining in that transformation after all subtrans

formation sequences in it have been removed. Then the scope of a

transformation or subtransformation is the union of the set of the

variables of the indexed patterns in its SD and the sets of local

variables of all transformations containing it.

The A-expression is used to state this contraint because generate may
be so constructed that successive calls on it with the same argument
generate different parse tree, i.e., generate may have side effects.

(2.2.1) 65

In these terms, the consistency condition for an IGT can be

restated. Every transformation in an IGT satisfies: for every

indexed indefinite pattern in the SD of a transformation, there

is no other occurrence of a pattern with its variable in an SD in

the scope of that transformation; for every indexed nonindefinite

pattern in the SC of a transformation, there is a pattern with the

corresponding variable in the scope of that transformation, or else

the symbol of the pattern is generable; and for every indefinite

pattern in the SC of a transformation, there is a suitable indefinite

pattern with the corresponding variable in an SD in the scope of

that transformation.

The chief problem then, is to define the scope of a transforma

tion. This may be done by considering "factorizations" of composite

selectors. A factorization of a composite selector TES is a collec

tion of composite selectors (factors) a.,...,a ES such that

T = o "...oo,. (Note that composition of selectors is non-commutative,
n i

so that the order of the factors is important.)

Consider then a subtransformation t. contained in the SC of a
1

transformation t, and suppose that TES selects an Indexed nonindefi

nite pattern in t.. The requirement that there be a pattern having

the corresponding variable within the scope of t. may be expressed

using factorizations of selectors, as:

66 (2.2.1)

(3 T')[T' JS T A varoT'(t) = varoT(t)

A (3o)(30j)(302)[T = Oj°o A T' = o^''^

A-i(3o')(3o;)(3ap[Oj = oJ°a' A a^ = o^o' A o' î Id]

A-i(3o)(3i)[o^ = Ojoelemd)]

A(-i(3op(3a^)[0i = a^os-subtrseqoOj]

=> (3a^)(30J^)[T' = o^os-sdooj]

A -i(303) (Soi,) [02 = a^os-subtrseq<i03])]]

This expression may be made more tractable by introducing some

predicates on selectors, two of which will also be useful later.

Definition 2.2.1 (7) Contained and Head

A composite selector o is contained in (is a head of) a composite

selector T if a and T satisfy is-contained (0,1), (is-head(a,i)) where

is-contained(a,T) = (3a,)(3a.)[T = a.^o^a,]

is-head(o,T) = (3©)[T = a.oa]

Two other useful predicates are is-in-sd(T) and is-in-sc(j), defined

for TES"*:

is-in-sd(T) = (30j)(3a2)[T = o^os-sd=o]

is-in-sc(T) = (3a^)(So^) [T = a^os-scOj

A -|is-contained(s-subtrseq,o.)]

Now the predicate is-in-scope(T',T) determining when a selector

r' is in the scope of a selector T may be defined:

(2.2.1) 67

is-in-scope(T ' ,T) = T'Ĵ T A (3 O) (3 a,) (3 O) [T=aioa A T ' = a "O

A-i(3 o') [is-head(o',aj) A is-head(a',02) A o' ^ Id]

A-'(3 i)[is-head(elem(i) ,0^)]

A (-1 is-contained(s-subtrseq,aj) 3 is-in-sd(T')

A-iis-contained(s-subtrseq,a_))]

With the predicate is-in-scope the consistency condition defining

IGTs can be conveniently stated (cf. definition 2.2.1 (6) for is-G-sd

and is-G-sc):

Definition 2.2.1 (8) IGT

Let G be a cfpsg. An intra-grammatical transformation (IGT) over

G is an object satisfying the predicate is-G-IGT(t) :

is-G-IGT(t) = is-tr(t) A is-G-sd'>s-sd(t) A is-G-scosc(t)

A s-symbol'>s-sd(t) = s-symbol"s-sc(t)

A (VT)[(is-in-sdoT(t) Ais-indef-patoT(t) Ais-indexedoT(t)

=> -1 (3T ') [is-in-sd»T' (t)^is-corresp-pat (T ' ,T, t)])

A (is-in-sc'>T(t) Z) [is-final-pat»T(t) A is-indexedoT(t)

3(3 T') [is-corresp-pat(T',T,t)]

V is-generableos-symbol"T(t) 1

A [is-indef-pat»T(t)

=)(3 T') [is-corresp-indef (T' ,T,t)]])]

ls-corresp-pat(T',T,t) = (var»T'(t) = varoT(t) Ais-in-scope(T',T))

is-corresp-indef(T',T,t) = is-corresp-pat(T',T,t) Ais-in-sd(T')

Ais-indef-pat''T'(t) A |s-indef-list<>T'(t) I = |s-indef-listoT(t) |

Is-indef-lisfT(t) |
'̂ I Et s-symbol»elem(i)'>s-indef-listoT' (t)

1=1

= s-symbol«elem(i)oS-indef-listoT(t)

68 (2-2.1)

Note that the predicate is-corresp-indef requires that, for an indefi

nite pattern in an sc tree, there be a pattern with the corresponding

variable in an SD, and it must also be indefinite. Furthermore, the

sequence of symbols in the indefinite lists of both patterns must be

*
the same.

The definition of the various aggregates of transformations com

pletes the specification of the abstract form of IGTs.

Definition 2.2.1 (9) Transformation Lists

Let G be a cfpsg. A transformation list is an object satisfying

is-G-trlist(t):

is-G-trlist(t) = is-G-IGT-llst(t) A [|t| ' 0

|t|-l
z> Et s-symbolos-sd<>elem(i) (t) = s-symbolos-sd<'elem(i+l) (t)]

1=1

If s-symbolos-sdoelem(l) (t) = C, t is sometimes called a ^-transforma

tion list.

Definition 2.2.1 (10) Transformation Sets

Let G be a cfpsg. A transformation set is an object satisfying

is-G-trset(S):

Actually, in this condition s-symboloFREE = Q; however, since the
lengths of the two indefinite lists must be the same and s-symbol
is defined for all other objects which can occur in the list,

s-symboloelem(i) os-indef-list°T(t) = a = is-FREEi>elem(i) os-indef-listi>T(t)

(2.2.1) 69

is-G-trset(S) = (V11)[)IES D is-G-trlist(il) h \l\ > 0

A-i(3ll')[£'eS A s-symbolos-sdoelem(l) (£') =

s-symbolos-sdoelem(l) (S.)]]

Definition 2.2.1 (11) Transformation Set Sequences

Let G be a cfpsg. A transformation set sequence is an object

satisfying is-G-trsetseq:

is-G-trsetseq = is-G-trset-list

The definition of the abstract form of IGTs is thus complete.

The following section defines a concrete representation for IGTs

based on this abstract form.

70 (2.2.2)

2.2.2 Concrete Form of Intra-Grammatical Transformations

The abstract forms of parse trees and IGTs. while necessary for

the definition of the semantics of transformations, are rather cumber

some and not well adapted to writing programs and transformations.

Therefore concrete forms, which are the forms in which programs

and transformations are normally written and displayed (cf. section

1.1), are introduced. These concrete forms are defined by a represen

tation function which interprets abstract forms to produce correspond

ing concrete forms.

The concept of representation system and the notation of section

3.2 of the Vienna Report provide the basis for constructing the

representation function. The representation system developed here

is the 5-tuple: <A,T,{R},R,R' where: A is the abstract syntax

described in sections 2.1.1, 2.1.2, and 2.2.1; T is the set of

represented symbols :

T= rep(is-symbol U is-index) U |'SD','SC ,==',},},'IND ' ,",?]•

(The function rep will not be specified except to say that it

is a 1-1 mapping between symbols and indices and their written repre

sentations) ; R is the single nonterminal name of the representation

system (the representation function); and R is the conditional replace

ment schema defining R, given below.

*
In the computer implementation of IGTs, "{ " is represented by "@",
and "}" by "%" (cf. sections 3.1.2 and 3.2.2).

(2.2.2) 71

Since lists occur frequently in the abstract syntax of parse trees

and IGTs, it is worthwhile to Introduce an abbreviated notation for the

representation of the elements of a list; this is the juxtaposition

operator JUXT, defined when is-list(L). (X is the empty symbol.)

JUXT R[elem(i)(L)] = (|L| = 0- > X ,
1=1 DF

|L| ' 0 ̂ R[elem(l)(L)]...R[elem(|L|)(L)])

Definition 2.2.2 (1) Representation Function

The representation function R is defined for composite objects by

the conditional replacement schema R:

| t |
i s - G - t r s e t s e q (t) V i s - s u b t r s e q (t) : R [t] = ' JUXT R [e l e m (i) (t)]

1=1
n n

i s - G - t r s e t (t) A (E t i s - G - t r l i s t (8 . .)) A t = ^ J , , , . . . , £ }• A «. = LIST d̂ :
1=1 ^ ^ ' " J i = l ^

R [t] = (JUXT R [e l e m (i) (l l)] }
1=1

i s - G - t r l i s t (t) A It I ' 0 :

R [t] = ' r e p o s - s y m b o l » s - s d » e l e m (l) (t) } JUXT R [e l e m (i) (t)] }
1=1

| t |
i s - s u b t r l i s t (t) : R [t] = ' { JUXT R [e l e m (i) (t)] }

1=1

i s - t r (t) : R [t] = ' ' S D ' R [s - s d (t)] = = ' R [s - s c (t)] ' S C '

i s - f i n a l - p a t (t) V i s - f i n a l - p a r s e (t) :

R [t] = ' r e p o s - s y m b o l (t) R [s - i n d e x (t)] R [s - s u b t r s e q (t)]

i s - p r o d - p a t (t) : R [t] = ' r e p o s - s y m b o l (t) R [s - i n d e x (t)]

| s - s u b - l i s t (t) I
(JUXT R [e l e m (l) o s - s u b - l i s t (t)] } R [s - s u b t r s e q (t)]

1=1

72 (2 . 2 . 2)

is-prod-pat(t)A-,(is-indexed(t) V | s-subtrseq(t) | ' 0) V is-prod-parse(t)

Is-sub-list(t)I
R[t] =' JUXT R[elem(i)os-sub-list(t)]

1=1

is-indef-pat(t): R[t] =' repos-symbol(t) R[s-lndex(t)]

Is-indef-llst(t)I
I 'IND' JUXT R[elem(i)os-indef-list(t)] }

1=1

R[s-subtrseq(t)]

is-indef-pat(t) A (31)[is-FREEoelem(i)os-lndef-list(t)] :

R[t] =' repos-symbol(t) R[s-index(t)]

Is-indef-list(t)]
} JUXT R[elem(l)os-indef-list(t)] } R[s-subtrseq(t)]

i=l

is-index(t): R[t] =' " rep(t) "

is-FREE(t): R[t] =' ?

is-n: R[t] =' A

One should note two points about the representation function R:

(1) The abstract forms of certain IGTs have more than one concrete

form; when this is true, they are all equivalent. (2) When R is

applied to a S -parse tree of a cfpsg G, the result is a string in

the language generated by G:

is-G-parse(t) A s-symbol(t) = f; 13 R[t] £ L(G)
s

(2.3) 73

2.3 Semantics of Intra-Grammatical Transformations

The semantic definition of IGTs comprises two principal parts:

the specification of the result of applying a transformation to a

parse tree, and the specification of the sequencing of aggregates

of transformations and subtransformations. Since the application

of a transformation necessarily involves applying the subtransformation

sequences in it, these two specifications are mutually dependent.

In addition to defining these two aspects of the semantics of

IGTs, this section also introduces the concept of an environment.

Basically, the environment of an IGT is the information which, in

addition to that in the SD and SC of the IGT, relates the transformed

parse tree to the parse tree to which the transformation is applied.

In an algorithmic implementation of IGTs, the environment is con

structed during matching of the SD of the IGT against the parse tree

and is used to look up the values of vari'ables in the SC during

construction of the transformed parse tree. However, in the following

definition of the semantics of IGTs, no attempt is made to specify

the computation of an environment, but rather the existence of an

environment relating two parse trees and a transformation is taken

as the condition for that transformation to apply to one parse tree

to produce the other. Since for indefinites more than one suitable

environment may exist, this section concludes with a discussion of

an order relation for environments, which permits the selection of

a unique environment (the minimal, or left-most one) for each applica

tion of a transfoirmation to a parse tree.

74 (2.3.1)

2.3.1 Environment of an Intra-Grammatical Transformation

An environment of an IGT is a set of environment elements,

each of which consists of a variable (in the sense of definition

2.2.1 (2)), a parse tree (the value of the element), and possibly

an indefinite skeleton. The indefinite skeleton is a list of selectors

which indicate the nodes in the parse tree matched by the non-

FREE elements of the indefinite list of a corresponding Indefinite

pattern. In this way the tree structure represented by the FREE

symbols of an indefinite pattern is assured to be the same for

the same variable in the SD and SC.

Following the pattern of previous definitions, the objects

representing environments are first defined, and then certain consis

tency conditions, which primarily define the semantics of FREE symbols,

are placed on them.

Definition 2.3.1 (1) Environments and Environment Elements

An environment is a set satisfying the predicate is-env; an

environment element is an object satisfying the predicate is-env-elet:

is-env(E) = (Ve) (e z E 3 is-env-elet(e))

is-env-elet = (<s-symbol: is-symbol>,

<s-index: is-index Vis-f2', <s-parse: is-parse>,

<s-indef-skel: is-sel-or-s-FREE-nlist Vis-fi')

is-sel-or-s-FREE = is-sel V is-s-FREE

is-sel = S'* *

is-s-FREE(s) = (Vo)[is-FREEos(o)]

(2.3.1) 75

Note that s-FREE is a constant selector, having as value the elementary

object FREE regardless of the object to which it is applied. (By a

convention of the Vienna Report (section 2.3) s-FREE is not an element

of S*.)

The consistency condition for environment elements is rather

complex. Inasmuch as it helps to define the semantics of indefinites

(cf. section 1.1.3). The condition must describe the following rela

tions: the subtree matched by a non-FREE element left of another

in the indefinite list must be left of the subtree matched by the

other; a non-FREE element at the left (right) end of an indefinite

list must match a leftmost (rightmost) subtree; and adjacent non-

FREE elements must match adjacent subtrees (in the sense that the

terminal strings of their subtrees are adjacent). Predicates charac

terizing these relationships can be defined in terms of the selectors

accessing the subtrees (and their factorizations).

The subtree selected by TJ is left of the subtree selected

by T if they satisfy the predicate -is-Z-e/t-o/fT jj T^) where T^ E S A

T^ E S :

is-left-of(Tj,T2) = (3o)(30j)(3o2)(3i^)(3i2)

[T = o °elem(ij)oo A TJ = 02<'elem(i2) oo ^ ij < I2]

The subtree selected by T in p is a leftmost subtree of p if they

satisfy the predicate is-leftmost (T,p) where T E S A is-G-parse(p):

ls-leftmost(T,p) = (Vo)(Vo')(Vi)[T = a'°elem(i)»oo 1=1]

76 (2.3.1)

The subtree selected by T in p is a rightmost subtree of p if the

predicate is-rightmost(T,p) is satisfied, where T E S A is-G-parse(p) :

is-rightmost(T,p) = (Vo) (Vo') (Vi) [T = a'oelem(i)oa => i = |o(p)|]

(Note that the argument p is not used in is-leftmost; this is an

artifact of the notation for lists.) The subtree selected by T is

adjacent to that selected by T in p if the predicate

is-adjacent(T.,x ,p) is satisfied, where T E S A T e S A

is-G-parse(p):

is-adjacent(Tj,T2,p) = (3a)(3o^)(3a^)(31)

[TJ = o i=elem(i)'>a A T = o oelem(i+l)o0

A Is-rightmost (a , elem(l)<>a(p))

A is-leftmost (Oj, elem(i+l)oa(p))]

With these definitions, the consistency condition for environment

elements becomes:

(2.3.1) 77

Definition 2.3.1 (2) G-Environment Elements

A G-environment element is an environment element satisfying the

consistency condition is-G-env-elet:

is-G-env-elet(e) = is-env-elet(e) A is-G-parseos-parse(e)

As-symbol(e) = s-symbolos-parse(e) A [->is-f2os-indef-skel(e)

Is-indef-skel(e)|
z> Et (-iis-s-FREEoelem(i) •>s-indef-skel(e)3

1=1

(3o.)[o. = elem(i) os-indef-skel(e)

A i s - p a r s e o o . o s - p a r s e (e)

A (i = l r) i s - l e f t m o s t (o . , s - p a r s e (e)))

A(l = I s - i n d e f - s k e l (e) | o I s - r i g h t m o s t (o . , s - p a r s e (e)))

i - 1
A Et (-1 is-s-FREEoelem(j) o s - i n d e f - s k e l (e)

j = l

z> [i s - l e f t - o f (e l e m (j) o s - i n d e f - s k e l (e) , o .)

A(j=i-lZ) is-adjacent (elem(j) •>s-indef-skel(e) ,

o^,s-parse(e)))])])]

Finally, a G-environment is an environment in which no two indexed

elements have the same variable:

Definition 2.3.1 (3) G-Environment

A G-environment is an environment satisfying the consistency

condition is-G-env:

Is-G-env(E) = is-env(E) A (Ve) [e e E 3 is-G-env-elet (e)

A(is-indexed(e)=i -> (3e')[e' E E A var(e') = var(e)])]

78 (2.3.1)

The introduction of two additional predicates relating environ

ment elements to parse trees and indefinite patterns, respectively,

complete the discussion of environments:

Definition 2.3.1 (4) Instance

A parse tree p is an instance of an environment element e if the

predicate is-instance(p,e,t) is satisfied, where is-G-parse(p) A

is-G-env-elet(e) A is-pat(t) (cf. definition 2.2.1 (7) for is-head):

ls-instance(p,e,t) = (VT)[is-parseoT(p) A (-i is-indef-pat(t)V

-•(3 1) [is-head(elem(i)<=s-indef-skel(e) ,T)])

3 immed-prodoT(p) = immed-prod<iTos-parse(e)]

Basically, a parse tree p is an instance of an environment element

e if p = s-parse(e) except, if t is indefinite, for the subtrees

selected by non-FREE elements of s-lndef-skel(e). Note that for

nonindefinite patterns, the definition reduces to p = s-parse(e) .

Definition 2.3.1 (5) Compatible

An environment element is compatible with an indefinite pattern

if the predicate is-compat(e,t) is satisfied, where is-G-env-elet(e)A

is-indef-pat(t) :

is-compat(e,t) = [var(e) = var(t) A "I ls-f2os-indef-skel(e)

A|s-indef-skel(e)I = |s-indef-list(t)|

|s-indef-list(t)|
A Et (3a)[a. = elem(i)os-indef-skel(e)

i=l ^ "̂

As-symboloo,os-parse(e)

= s-symbol=>elem(i) os-indef-list(t)]]

(2.3.1) 79

Thus an environment element corresponding to an indefinite pattern

is compatible with it provided the element has an indefinite skeleton

with FREE elements in the same positions as the FREE symbols in the

indefinite list, and whose non-FREE elements select subtrees whose

symbols are the same as those of their corresponding subpatterns in

the indefinite list.

80 (2.3.2)

2.3.2 Predicates Defining the Semantics of Transformations

The predicate which defines the result of applying a single IGT

to a parse tree necessarily uses predicates defining the semantics

of subtransformation sequences (which may be applied to subtrees of

the transformed parse tree) and also those defining the semantics

of transformation sets (which are reapplied to the transformed parse

tree in bottom-up order). Therefore, these predicates, which define

the sequencing rules discussed in sections 1.1.2 and 1.1.4, will be

defined first. One may keep in mind that the predicate is-tr-result

(P2,Pi,t,E,S) (definition 2.3.2 (8)) is true if P2 is the result of

recursively reapplying the transformation set S to the result of

applying the transformation t to p , with the environment E.

The first predicate to be defined is the one which characterizes

the result of applying a transformation list. It employs the predi

cate is-indef-min (defined in section 2.3.3) to establish the unique

ness of the environment (with respect to its Indefinite elements)

used by is-tr-result. For the purpose of understanding the definitions

of this section, is-indef-min may be taken to be true for any envi

ronment E. (Note that conditional expressions of the type discussed

in section 2.1 are used in this and several of the following defini

tions.)

(2.3.2) 81

Definition 2.3.2 (1) Trlist Result

A parse tree Pj is the result of applying a transformation list

to a parse tree pi if the predicate is-trlist-result (p2,Pi,l,S)

is satisfied, where is-G-parse(p2) A is-G-parse(pj) A is-G-trlist()l)A

is-G-trset(S):

is-trlist-result(p2,Pi ,«.,S) =

(UI = 0 -• P2 = pi,

(3p)[(3E) [is-G-parse(p) A is-G-env(E)

A is-indef-min(E,pi,head(d),]})

A is-tr-result(p,p, ,head(S,) ,E,S)J -»• P2 = p],

T •* is-trlist-result(p2,P] ,tail()l) ,S))

Basically, is-trlist-result is true if pj is the result of applying

the first transformation in the transformation list that applies to

Pi; or, if none applies, if P2 = pj.

The next two predicates define the result of applying a transfor

mation set to a parse tree. The first characterizes the result of

applying a transformation set to the first level of the parse tree,

while the second defines the result of applying the set throughout the

tree in bottom-up, left-to-right order (cf. section 1.1.2).

Definition 2.3.2 (2) Trset Result

A parse tree P2 is the result of applying a transformation set

to a parse tree pj if the predicate is-trset-result(p2,P\,S) is

satisfied, where is-G-parse(p2) A is-G-parse(pj) A is-G-trset(S):

82 (2.3.2)

is-trset-result(p2,Pi,S) =

((3l)[l. E S A s-symbol°s-sdoelem(l) (£) = s-sjrabol(pi)

•+ is-trlist-result (p2 ,Pi ,£,S)],

T * P2 = Pi)

Definition 2.3.2 (3) Trset Recursive Result

A parse tree P2 is the result of the recursive application of a

transformation set throughout a parse tree pi if the predicate

is-trset-rec-result(p2,P\,S) is satisfied, where is-G-parse(p2)A

is-G-parse(pj) A Is-G-trset(S) :

is-trset-rec-result(p2,Pi,S) "

(is-final-parse(pi) ZD is-trset-result (p2 ,pi ,S))

A(is-prod-parse(pi) 3 (3p)[is-G-parse(p)

s-sub-list(p)I = Is-sub-list(pi) I
1 s-sub-list(pi)I

Et is-trset-rec-result(elem(i)os-sub-list(p).
1=1

elem(l)os-sub-list(pi),S)

A is-trset-result(p2,p,S)])

The result of applying a transformation set sequence is defined

in terms of the recursive application of each transformation set in

the sequence to the result of its predecessor:

Definition 2.3.2 (4) Trsetseq Result

A parse tree p is the result of applying a transformation set

sequence to a parse tree p^ if the predicate is-trsetseq-result(p,pQ,q)

is satisfied, where is-G-parse(p) A is-G-parse(po) A is-G-trsetseq(q) :

(2 .3 .2) 83

| q |

is-trsetseq-result(p,Po,q) = | 3 p.
U=l 1

(Et [is-G-parse(p)
1=1

A is-trset-rec-result(p.,p. ,elem(i)(q))]) A p = pi i

Finally, the function which returns the result of applying a

transformation set sequence to a parse tree is defined as follows:

Definition 2.3.2 (5) Transform

The result of applying a transformation set sequence to a parse

tree is the value of a function transform(p,q), where is-G-parse(p)A

is-G-trsetseq(q), which satisfies:

is-trsetseq-result(transform(p,q),p,q)

Note that transform (p,q) always has a value, since if no transforma

tion in the sequence ever applies, is-trsetseq-result(p,p,q).

The two predicates which define sequencing for subtransformations

are quite similar to is-trlist-result and is-trsetseq-result. How

ever, the Markov sequencing must be explicitly built into is-subtrlist-

result, since it does not arise implicitly from recursive reapplication

as it does for transformation lists. Moreover, is-subtrlist-result

must also pass to the subtransformations the environment of the trans

formation in which they occur, augmented by an environment containing

elements corresponding to variables occurring in the subtransformation

but not in the transformations containing it.

(2.3.2)

Definition 2.3.2 (6) Subtrlist Result

A parse tree pj is the result of applying a subtransformation

list to a parse tree p^ if the predicate is-subtrlist-result

(p ,P^A,i.^',S) is satisfied, where is-G-parse(p2) A is-G-parse(Pi)A

is-subtrlist (J.) A is-G-env(E) A is-subtrlist (i') A Is-G-trset (S) :

is-subtrlist-result(p2,Pi ,li,E, J.' ,S) =

(|£| = 0 -> P2 = Pj,

(3p)[(3E') [is-G-parse(p) A is-G-env(E' U E)

A is-indef-min(E',pj,head(£),E)

Ais-tr-result(p,Pj,head(i),E' U E,S)]

•* is-subtrlist-result(p2,p, J-' ,E,£' ,S)],

T ->• is-subtrlist-result(p2,Pi ,tail()l) ,E,Jl',S))

Definition 2.3.2 (7) Subtrseq Result

A parse tree p is the result of applying a subtransformation

sequence to a parse tree pj if the predicate is-subtrseq-result

(p,p„,q,E,S) is satisfied, where is-G-parse(p) A is-G-parse(p^)A

is-subtrseq(q) A is-G-env(E) A is-G-trset(S):

is-subtrseq-result(p,p ,q,E,S) = 3 P

1=1
(Et [is-G-parse(p .)
i=l ^

Ais-subtrlist-result(p.,P._, ,elem(l)(q),E,elem(i)(q),S)])

Ap = p.

The definition of the sequencing of transformations and subtrans

formations is now complete, and only the definition of the semantics

of an individual transformation, via the predicate is-tr-result,

remains. This predicate is defined in terms of one further predicate.

(2.3.2) 85

is-match; is-tr-result requires that the parse tree being transformed

match the SD of the transformation and that the transformed parse

tree match the SC of the transformation.

Definition 2.3.2 (8) Tr Result

A parse tree P2 is the result of applying an IGT to a parse tree

Pl if the predicate is-tr-result(p2,P\,t,E,S) is satisfied, where

is-G-parse(p2) A is-G-parse(pj) A is-G-IGT(t) A Is-G-env(E) A

is-G-trset(S):

is-tr-result(p2,Pi,t,E,S) = (3p)[is-G-parse(p)

Als-match(pi,s-sd(t),E,S) A is-match(p,s-sc(t),E,S)

A is-trset-result(p2,p,S)]

Definition 2.3.2 (9) Match

An SD or SC of a transformation matches a parse tree if the

recursively defined predicate is-match(p,t,€,S) is satisfied, where

is-G-parse(p) A (is-G-sd(t) V is-G-sc(t)) A is-G-env(E) A is-G-trset(S);

ls-match(p,t,E,S) = (3p")(3p')(3e)

[is-G-parse(p") A is-G-parse(p')

As-symbol(p) = s-symbol(p") = s-symbol(p') = s-symbol(t)

A[Is-indexed(t) V is-indef-pat(t) 3 ecE

Avar(e) = var(t) A is-instance(p',e,t)]

A[is-prod-pat(t) 3 |s-sub-list(p')| = |s-sub-list(t)|

|s-sub-list(t)I
A Et is-match(elem(i)os-sub-list(p'),

1=1
elem(i)»s-sub-list(t),E,S)]

86 (2.3.2)

A [is-indef-pat(t) 3 is-compat(e,t)

Is-indef-llst(t) |

Et (-) Is-FREEoelem(i) os-indef-list(t)

' 1=1

3(3o.)[o. = elem(i)os-indef-skel(e)

A is-match(a.(p'), elem(i)os-indef-list(t),E,S)])]

A[is-prod-parse(p') 3 |s-sub-list(p")I = |s-sub-list(p') |

Is-sub-list(p')I

, Et is-trset-rec-result

1=1

(elem(i)os-sub-list(p"), elem(l)os-sub-list(p'),S)]

Ais-subtrseq-result(p,p",s-subtrseq(t),E,S)]

This rather lengthy recursive definition may be understood as

follows: There must exist two parse trees satisfying some obvious

restrictions, which act as "intermediate results." If the pattern

is indexed or indefinite there must also exist an environment element

corresponding to it, (var(e) = var(t)), and the parse tree p' must be

an instance of it. (Recall that for non-indefinite patterns, is-

instance (definition 2.3.1 (4)) represents equality.)

The recursive phase of the definition determines that the subtrees

of the parse tree p' match the subtrees of the pattern tree. (But if

the pattern is final no further restrictions are placed on the

remainder of p'.) For a production pattern the recursion is on the

elements of the sub-lists of p' and t; for an indefinite pattern, e

must be compatible with t (cf. definition 2.3.1 (5)), and the recursion

is on the non-FREE elements of the indefinite list of t, descending

in p' all the way to the subtrees selected by the corresponding

elements of the indefinite skeleton of e.

(2.3.2) 87

The next phase of the definition determines that the subtrees

(if any) of p" are the result of applying the transformation set S

recursively to the respective subtrees of p'. The final phase then

consists of checking that p is the result of applying the subtrans

formation sequence of t to p". (If there is no subtransformation

sequence of t, this becomes p = p".)

The following points should be noted about this definition.

First, when is-match is applied to the SD of a transformation, the

last two phases are vacuous. This is obvious for the subtransforma

tion sequence phase, since the consistency condition is-G-sd permits

no subtransformation sequences in the SD. That it is also true for

the transformation set phase is a consequence primarily of the defini

tions of is-trset-rec-result and is-match: together they insure that

before any transformation is applied at a given point in a parse

tree, all its subtrees have been fully transformed by the transforma

tion set. This redundancy in the definition is tolerated to retain

the symmetry of employing a single match function for both the SD and

SC of a transformation.

Second, there is also some redundancy in the transformation set

phase when is-match is applied to the SC of a transformation. That

is, for non-indefinite patterns one may employ is-trset-result in

place of is-trset-rec-result. This is clear for production patterns,

since is-trset-result will have been applied to the subtrees as a

consequence of the recursion of is-match. For final patterns, it is

a consequence of the definition of is-G-sc, since a non-final parse

88 (2.3.2)

tree corresponding to a final pattern tree must appear also in the

parse tree matched by the SD (or else be generable), hence it must

have already been fully transformed (assuming generated parse trees

are fully transformed). Even for indefinite patterns it is not

necessary to perform a full recursive reapplication of the transfor

mation set, since it can only reapply at a node whose selector is a

head of one of the selectors in the corresponding indefinite skeleton

(again because the parse tree of the corresponding environment element

must have appeared in the parse tree matched by the SD). This slight

redundancy is tolerated to maintain the simplicity of the definition.

This completes the definition of the semantics of IGTs except

for the question of the uniqueness of environments, discussed in the

following section.

(2.3.3) 89

2.3.3 Uniqueness of the Transformed Parse Tree

A natural question regarding definitions such as those of the

preceding section is whether the parse tree asserted to be the result

of applying a transformation (or aggregate of transformations) is

uniquely determined by the parse tree being transformed and the trans

formation. This section presents a proof that, by placing an order

on the indefinite elements of environments (corresponding to top-down,

left-to-right matching of indefinites in the SD of a transformation),

the various predicates and consistency conditions act in concert to

guarantee an affirmative answer to this question, except for generated

symbols. (Indeed, the usefulness of generated symbols is precisely

that successive generations of the same symbol may produce different

results, as for the generated labels discussed in section 1.1.1.)

It should be clear that the definitions given so far do not

always uniquely determine the match of a feymbol in an indefinite list,

in case the subtree being transformed contains multiple instances of

a match for that symbol. That is, for Transformation 12 and example

(14) of section 1.1.4, the definitions so far given do not determine

that "j" will be the identifier first matched by <identifier'"l".

For this particular example the order in which the matches occur is

not significant, but it is possible to write transformations which

depend on the order of matching indefinites, hence that order should

be defined.

The first step is to define an order for two comparable indefinite

90 (2.3.3)

environment elements. Two environment elements are comparable if the

predicate is-comparable(e,e ') is satisfied:

is-comparable(e,e') = is-G-env-elet(e) A is-G-env-elet(e')

Avar(e) = var(e') A s-parse(e) = s-parse(e')

A-iis-f2os-indef-skel(e) A | s-indef-skel(e) | = |s-indef-skel(e') |

Is-indef-skel(e)|
A Et (3a.)(3oI)[o. = elem(i)os-indef-skel(e)

i=l 1 1 1

Aol = elem(i)os-indef-skel(e')

As-symboloa.os-parse(e) = s-symbol°alos-parse(e')]

That is, two environment elements are comparable if their variables

and parse trees are equal, they both have indefinite skeletons, and

corresponding elements of those skeletons select subtrees of the

parse tree having the same head symbol.

If e and e are comparable environment elements, e. is less than

e2 if they satisfy the predicate is-less-than (e,,e2), where

Is-comparable (ei,e2):

is-less-than(ei,e2) = (3i) (3ji)(3J2)(3o) (3oi)(302)

"i-1
(• Et elem(k)os-lndef-skel(ei) = elem(k)os-indef-skel(e,))
k=l ^

Aelem(i)os-indef-skel(ei) = aioelem(jj)oa

Aelem(l)os-indef-skel(e2) = a2'>elem(J2) °o

A(jl < J2 V [Jl = J2 A Ol = IdA02 ^ Id])J

That is, one of two comparable environment elements is less than the

other if corresponding elements of their indefinite skeletons are

equal up to some point, at which the selector of the first is either

(2.3.3) 91

left of, or properly contained in, the selector of the second.

Lemma 2.3.3 (1)

Let ej and e2 be comparable environment elements. Then either

ei = e2 or one is less than the other.

Proof:

Suppose ej ̂ e2. Then by the definition of is-comparable ej and

62 differ in their indefinite skeletons, i.e., (3 1') [elem(i') •>

s-indef-skel(ej) ̂ elem(i')'>s-indef-skel(e2)] . Let i be the first

such i', and for j=l,2, let T. = elem(i)os-indef-skel(e.). Now

Tl # T2 implies either one is a proper head of the other, or they

branch at some point. Suppose is-head(Ti,T2). Then (3o)(3o2)

(3j) [tl = elem(j)<>o A T2 = a2"'elem(j)oa A 02 ̂ Id] and hence

is-less-than(ei,62). On the other hand, if TI and T2 branch,

(3Ji)(3J2)(3o)(3ai)(3a2) [TI = aioelem(j i)<>a A T2 = 02''elem(J2) "O

A (j 1 ̂ JaV J2 ^ Ji)]. But then ls-less-than(ei,62)V

is-less-than(e2,ej). Q.E.D.

Now suppose E is an environment and let I (E) denote the subset

of E consisting of those environment elements which correspond to

indefinite patterns in the SD of a transformation t. The order for

environment elements can be extended to an order on the subsets

I (E.) and I (E.) of two environments E and E , both of which

suffice to match t to a parse tree p, by comparing the elements of

these subsets in an order defined by t. The computation of the

92 (2.3.3)

relation between two environments is performed by the recursive

predicate is-not-greater-env(Ei,E2,s-sd(t),p), where

is-match(p,s-sd(t),Ej,{}) A is-match(p,s-sd(t),E2,{}) :

is-not-greater-env(Ei,E2,t,p)

(is-FREE(t) V is-final-pat(t) ->• T,

is-prod-pat(t) ^ is-not-greater-env-list(Ej, E^, s-sub-list(t) ,

s-sub-list(p)),

(3ei)(3e2)[is-indef-pat(t) A ê E Ej A ej E Ê A is-compat(ej,t)

A is-lnstance(p,ej , t) A is-comparable(ej ,6^) "̂

(is-less-than(e ,e2) V is- less-than(e2,ej) ->•

—I is-less-than(e >e) ,

T ->• ls-not-greater-env-llst(Ej ,E2 ,

Is-indef-list(t) I
s-indef-list(t) , LIST (elem(i)<>s-indef-skel(ei)) (p))

)

)

is-not-greater-env-list(Ej,E2,t ,p) =

(| t | = 0 ^ T,

is-not-greater-env(E, , E. , head(t) , head(p))

A is-not-greater-env(c 2, Ei, head(t) , head(p)) -*•

is-not-greater-env-list(Ej, E2, tail(t) , tall(p)),

T -• is-not-greater-env(E , E , head(t), head(p))

)

(Note that appropriate ei and e2 always exist in is-not-greater-env,

since both Ei and E2 match t and p; and that ei and 62 are always

comparable, since recursion terminates as soon as a pair are not

equal.)

(2.3.3) 93

In analogy with lemma 2.3.3 (1) there is:

Lemma 2.3.3 (2)

Let El, E2, t, and p be such that is-match(p, s-sd(t) , Ei, {})A

is-match(p, s-sd(t), E2, }}). Then is-not-greater-env(Ei, E2,

s-sd(t), p) V is-not-greater-env(E2, Ej, s-sd(t), p), and both are

true if and only if I (Ei) = I (E2).

The lemma follows immediately from the observation that,

because s-sd(t) is finite, is-not-greater-env terminates. Also,

is-not-greater-env(Ei,E2,s-sd(t),p) A is-not-greater-env(E2,Ei,s-sd(t),

p) if and only if -iis-less-than(ei ,62) A —iis-less-than(e2 ,ei) for

each corresponding pair of elements ei and 62 in I (Ei) and I (E2).

Since there are only a finite number of elements in I (E) for

any transformation t, and since there are only a finite number of

distinct comparable environment elements with the same variable and

parse tree, the following lemma holds:

Lemma 2.3.3 (3)

The collection {l (E.)} of I subsets of the elements of a collec

tion (E.} of environments satisfying is-match(p,t,s-sd(t),E ,{})is

well ordered by is-not-greater-env.

There is thus an environment having a unique minimum I subset

for each transformation-parse tree pair, as determined by the

predicate is-indef-min (cf. 2.3.2 (1) Trlist Result and 2.3.2 (6)

Subtrlist Result which use is-indef-min.)

94 (2.3.3)

Definition 2.3.3 (1) Indefinite Minimum

An environment E is indefinite minimum with respect to a parse

tree p, transformation t, and global environment E' if the predicate

is-indef-min(E,p,t,E') is satisfied, where is-G-env(E U E')A

is-G-parse(p) A is-G-IGT(t):

is-indef-min(E,p,t,E') = ls-match(p, s-sd(t), E' U E, {})

A(VE")[is-G-env(E' U E") A is-match(p, s-sd(t) , E' U E", }})

:3is-not-greater-env(E, E", s-sd(t), p)]

It is now possible to prove the uniqueness of the parse tree

which is the result of applying a single transformation not containing

subtransformations and applied in the context of an empty transforma

tion set. For conciseness a transformation list of length one is

constructed from the transformation and passed to is-trlist-result.

Theorem 2.3.3 (1)

Suppose is-G-IGT(t) A (VT) [is-patoT(t) Z> | s-subtrseq<>T (t) | = 0,

is-G-parse(p), is-G-parse(pi), and is-trlist-result(pi, p,

y.(<elem(l): t'), (}). Then pi is unique except possibly for subtrees

corresponding to generable symbols in s-sc(t).

Proof:

By the definitions of is-trset-result and is-subtrlist-result,

these predicates reduce to the equality predicate on their first two

arguments for S = }) and empty subtransformation sequences. Therefore,

they may be ignored in is-match in this proof.

(2.3.3) 95

Suppose (3P2)[is-trlist-result(p2, p, y (<elem(l): t'), {})].

Then P2 satisfies is-tr-result for some indefinite minimum environ

ment EJ, as does pi for Ei. But by Lemma 2.3.3 (3), I (Ei) is

uniquely determined by p and t, hence I (Ei) = I (Ej).

Let V (E) = {e E E I (3T)[is-indexedoTos-sd(t) A var(e) = varoTo

s-sd(t)]} (This excludes the generable symbols, which are those

indexed symbols appearing in the SC of t but not in the SD.) Then

^^(Ei) = Vj.(E2). For V|.(Ei) n IJEi) = V|.(E2) fl l^(E2) , and if

e E V (E) - I (E^), 1=1,2 and var(ei) = var(e2), by the definition

of V (3T)[var(ei) = varoT°s-sd(t)]. By definition of is-match,

(3o)[s-parse(e.) = a.(p)], 1=1,2. Now a. depends possibly on ele

ments of I (E.), but I (El) = I (E2), hence a; = 02; therefore,

ei = 62. Thus V|.(Ei) = V|.(E2).

Now it follows that pi = P2 except for subtrees arising from

elements of E,-V (E) and E2~^f(^2^ (the generable symbols). For

the tree structure of pi and P2 is determined in three ways: from

final patterns, production patterns, and indefinite patterns of t.

Certainly the parts matching production patterns of t are identical,

as are those determined from indefinite patterns since I (E) =

I (E) and the definition of is-G-IGT guarantees a unique correspond

ing symbol in s-sd(t) for each indefinite symbol in s-sc(t). As for

final patterns of t, either these are unindexed, in which case by

the definition of is-G-sc their sjrmbol is a terminal symbol of G, as

is that of Pl and p2 (by is-match) and all are equal; or else the

final pattern is indexed, hence if the corresponding environment

96 (2.3.3)

element is in V (Ej) = '^^(^2''' ^^^^ subtree of Pj and p^ are equal.

Q.E.D.

A similar theorem and proof are possible for subtransformations,

where the scope rules of is-G-IGT guarantee that for all non-

generable symbols in the SC there exist corresponding elements in

the total environment E' U E. The theorem can then be extended to

the result of applying a transformation set sequence, under the hypo

thesis that the sequence terminates. In view of the result of section

2.4, however, termination cannot always be guaranteed.

Corollary 2.3.2 (1)

Suppose Is-G-IGT(t) A s-sd(t) = s-sc(t), and is-G-parse(p) . Then

is-trlist-result(p, p, y (<elem(l): t'), }}).

Proof:

The proof follows immediately from the fact that the SD and SC

of t satisfy both is-G-sd and is-G-sc. Hence t contains no subtrans

formations and no generable symbols, and theorem 2.3.3 (1) applies.

Q.E.D.

(2.4) 97

2.4 Generative Power of Intra-Grammatical Transformations

This section is devoted to a proof that IGTs have at least the

generative power of a simple Turing machine (in the sense of Davis

[13]). The theorem is proved by stating an algorithm which, given

the definition of a Turing machine, constructs an IGT system which

simulates the operation of the Turing machine, in the sense that

given the same initial instantaneous description they both give the

same resultant.

To facilitate the proof, some definitions for IGTs paralleling

those of [13] for Turing machines are introduced. Suppose that Z is

a simple Turing machine with an alphabet A = }S.,S,,...,S }, a set

of states E = }q ,q ,...,q } and a set of quadruples K. A transfor

mational instantaneous description (TID) of Z is a G-parse tree

whose head symbol is <inst descr', where G is the cfpsg:

G, = (is-G„-nonterm, is-G-term, is-G-prod, <inst descr')

and the relevant predicates are defined (in terms of the concrete

forms of the elements they characterize) by:

is-G-nonterm = }<inst descr', <left part', <right part',

<state', <symbol'}

ls-G,-term = A U Z U {#, , #„}

and the elements of is-G-prod are:

98 (2.4)

<inst descr'

<left part'

<right part'

<state' ::= qj | qj

<symbol' ::= S | S

:= <left part' <state' <right part'

= # I <left part' <symbol'

I <symbol' <right part'
R

Corresponding to the set of quadruples K of Z is constructed

the <inst descr'-transformation list L , according to the following

algorithm:

(a) Corresponding to a quadruple of the form:

q. S. S, q„
^i j k ^5,

add to L the transformation:

'SD'

<left part' "1" q. S. <rlght part' "1"

<left part' "1" q S <rlght part' "1"

'SC'

(b) Corresponding to a quadruple of the form:

q- S. R q„
1 J il

add to L the two transformations in order:

'SD'

'SC'

'SD'

<left part' "1" q. S. #„
1 1 R

<left part' "1" S^ q^ S^ «^

<left part' "1" q^ S. <right part' "1"

'SC

<left part' "1" S. q <right part' "1"
J J6

(2.4)

(c) Corresponding to a quadruple of the form:

" l ^j L 1^

add to L the two t r a n s f o r m a t i o n s :

'SD'

it- q. S. <r igh t p a r t ' " 1 " L 1 J ° "̂

*L ''(I ^0 ^j ^"^IS^t p a r t ' " 1 "

' S C

'SD'

<left p a r t ' " 1 " <symbol' " 1 " q. S. <right p a r t ' " 1 "

<left p a r t ' " 1 " q <symbol' " 1 " S. <right p a r t ' " 1 "
*• J

•sc

(These are the only kinds of quadruples which occur in K.)

A TID of Z is a transformational terminal description (TTD) of Z

if it is the result of applying the transformation set sequence

consisting of L to a TID of Z.

If a TID p is the result of applying a single transformation of

L (which does apply) to a TID p , one writes p ==' p . If p is a

TTD of Z and, for 1 < i < p-l, 3D. such that •. is a TID of Z and
p. ==' p., , one writes o = TR-(o), that is, n is the transforma-
i 1+1 p Z ^ 1 P

tional resultant by Z of p .

With these definitions, the theorem may be stated (cf. section

2.2.2 for the definition of R):

Theorem 2.4 (1)

Let Z be a simple Turing machine and a ,a be instantaneous des-
1 P

criptions of Z. Let G and L be a cfpsg and transformation list

100 (2.4)

constructed from Z as described above, and Pj,P be TIDs of Z, and

suppose R[pj] = #L"I"R "̂"̂ "̂ tp] = *L"P*R. Then a^ = Res2(aj) if

and only if p = TR (p^).

Proof:

It suffices to prove that, for Z, a -̂ a , if and only if '̂ n n+i

P„ ==> P„+i. where R[pJ = it^aj^ and R[p^^^] = //^V/'R- ^^ '^^""^-

tion a. -*• a. , implies one of five cases holds (cf. [13] p. 7);
1 1+1

similarly by the algorithm above, p ==' p implies one of five

similar cases (corresponding to the five kinds of transformations

generated by the algorithm) holds.

Case (1). There exist expressions P and Q (possibly empty) such

that:

a = P q. S. Q
n 1 J

a J. = P q S, Q
n+1 ^£ k ^

and q̂ S S^ q^ E K. Let p^ be a G^-parse tree such that R[p] =

^L^n^R' Then by the definition o.f tape expression (definition 1.5

of [13]), it is clear that p corresponds to the tree:

<inst descr'

<state' <right part'

q. <symbol' <right part'

^j Q'^R

Hence a transformation created in step (a) of the algorithm will apply

to produce an object p^^^ corresponding to the tree:

(2.4) 101

<inst descr'

<left part'

* L ^

<rlght part'

<symbol' <right part'

Q K

so that R[p] = # P q„ S Q # = #, a ^, #„, as required. Moreover,
n+1 L ^ H k R L n + I R ^ '

there is only one transformation in L which applies to p , since by

the definition of Z there is only one quadruple in K beginning q. S....

Thus if p ==' p , and # a # = R[p], then there is a quadruple:

q- S. S, q„ 1 J k £

in K so that a ->• a , where a , = P q„ S, Q, or # a , #„ = R[p , ,] .
n n+1 n+1 ^£ k ^ L n+1 R 'n+1

(2) There exists an expression P (possibly empty) such that:

a = P q. S.
n 1 J

«n+l = P Sj "£ So

and q. S. R q„ E K. Let p be a G„-parse tree such that R[p] =
1 1 £ n Z n

#,a
L n R'

Then by definition, p corresponds to the tree:

<inst descr'

<right part'

'symbol' <right part'

<left part'

* L ^

Hence the first of a pair of transformations created in step (b) of

the algorithm applies (note the importance of the order of this pair

of transformations) to give an object p corresponding to the tree:

102 (2.4)

<inst descr'

<left part' <state' <rlght part'

/ \ I / \
<left part' <symbol' q. <S5mibol' <right part'

*L^

so that R[p
n+1-' *L ^ Sj \ 'O *R L n+1 R

, as required. In

this case there are two transformations in L that apply to p , but

the one ending in # is first in the list. Thus if p ==' p and

#,a # = R[p], it is this first transformation which will apply and
L n K n

its corresponding quadruple In K is q. S. R q., so that a -<• a
1 J ^£ n n+1

where a^^^ = P S^ q^ S^, or #^ a^^^ tt^ = R[p^^^]. as required.

(3) There exist expressions P and Q (possibly empty) such that:

a = P q. S. S, Q
n ^1 j k ^

<̂ J.1 = P S. q„ S, Q
n+1 J ^£ k

and q^ S R q^ c K. The argument is similar to case (2), but the

second transformation of the pair of step (b) applies, since the

symbol after S. is not iL.
J R

(4) There exists an expression Q (possibly empty) such that:

^ = q. S. Q
n ^1 i ^

n+1 \ S„ S. Q

and q^ S_. L q^ E K. The argument is similar to case (1) , and the

first transformation of step (c) applies.

(2.4) 103

(5) There exist expressions P and Q (possibly empty) such that:

-n = ^ \ "i Sj 5̂

V l = P ̂ £ \ Sj '̂

and q S L q E K. The argument is similar to case (4), but the

second transformation of the pair of step (c) applies.

Thus a -• a , , if and only if p ==' p , , , hence by induction,
n n+1 n n+1

a = Res (a) if and only if p = TR,(p) where #,«,#_ = R[P,] and
p L. \ p Z l LIK 1

«,o.J^ = R[p^]. Q.E.D.
L p K p

It is interesting to note that in this proof only the very

simplest transformations (those with no indefinites and no subtrans

formations) are used. This is possible because the grammar G is

in some sense "well matched" to the task it must perform. One can

gain some insight into the relationship between the form of the

grammar and the need to use indefinites by considering the transfor

mation list necessary to prove this theorem if the productions:

<right part' ::= # | <right part 1' ''ĵ

<right part 1' ::= <symbol' | <rlght part 1' <symbol'

are substituted for that of <rlght part' in the above grammar.

104 (2.5)

2.5 A Computer Implementation of Intra-Grammatical Transformations

The computer implementation of IGTs was constructed both to study

the semantics of IGTs and to facilitate the design and verification

of transformation set sequences. Both transformation set sequences

and programs can be presented to the system in their concrete forms

(as defined in section 2.2.2), and the transformed program is printed

(or punched) by the system in its concrete form. This ability to

work with the concrete forms of IGTs and programs (which are much

simpler than their abstract forms) greatly facilitates use of the

system.

The IGT system consists of two programs: the compiler, TRCOM,

and the interpreter, XFORM. TRCOM is written in the Stanford compiler

writing language XPL [28]. It inverts the mapping R of section 2.2.2

to translate the concrete forms of IGTs and programs into a LISP

list representation of their abstract forms. The compiler is complete

in the sense that it translates all of the features of transformations

and subtransformations (imposing only the restriction that indices

be Integers in the range 0-999 and that mentioned at the end of section

2.5.2); however, it does not check all of the consistency conditions

of section 2.2.1. (Thus certain syntactic errors, which are not

detected in TRCOM, may be detected in XFORM as the transformations

are interpreted.) TRCOM is parameterized in terms of the grammar

used, hence a compiler for a different grammar may be obtained simply

by replacing the grammar tables (produced by the XPL Analyzer program)

(2.5) 105

and the lexical analyzer, which processes input characters to convert

them to terminal symbols of the grammar. TRCOM is not otherwise

particularly innovative and will not be discussed further here.

XFORM is the transformation interpreter and is written in LISP

[27]. It accepts a list representation of the pattern and parse

trees which are the abstract forms of IGTs and programs and applies

the former to the latter to produce the transformed program. In

the following discussion the functions implementing XFORM are stated

as LISP M-expressions employing the selectors and predicates introduced

in sections 2.1, 2.2, 2.3, and the remainder of this section. (The

actual LISP program used is written in terms of the explicit data

representation chosen and includes checks for certain syntactic

errors; it will not be discussed further here.)

The functions constituting XFORM may be divided into three

categories: matching, changing, and sequencing. The matching func

tions determine if the SD of a given transformation matches a

particular parse tree, and if it does, they produce the (indefinite

minimum) environment defining the match. The changing functions

then use this environment and the SC of the transformation to construct

the transformed parse tree. Both matching and changing are performed

under control of the sequencing functions.

Before the functions for matching, changing, and sequencing

can be discussed, the representation for environments and certain

synthesis functions for trees must be defined. Environments are,

of course, represented by lists of environment elements. (Note that

106 (2.5)

a "dummy" NIL is added to the end of every environment to distinguish

the empty environment from NIL, which indicates a transformation

fails to match.) To look up entries in the environm.ent, the following

function is useful:

lookup[variable; env] =

A[[env elet];

[null[env elet] ^ NIL;

var [env elet] = variable ->• env elet;

T -> lookup [variable; cdr[env]]

]
] [car[env]]

Environment elements are list representations of the objects

synthesized by the following function:

env-elet(v,p,s)

(<s-symbo

<s-parse: p', <s-indef-skel: s')

y.(<s-symbol: s-symbol(v)', <s-lndex: s-lndex(v)>.

Here v is the result of the function var (cf. definition 2.2.1 (2)), p

is a parse tree, and s is an indefinite skeleton represented by

"severely pruning" a copy of the parse tree of the element so that

It extends only to the substitutable nodes, i.e., the nodes selected

by the selectors in the indefinite skeleton. This representation

of an indefinite skeleton, which for the remainder of this section

is considered to be selected by s-indef-skel, may be taken to be

the list representation of the abstract object defined by the predicate

is-G-skel:

(2.5) 107

is-skel = is-final-skel V is-prod-skel

is-final-skel = (<s-symbol; is-symbol', <s-subst: T V F')

Is-prod-skel = (<s-s5mibol: is-symbol', <s-sub-list: is-skel-list')

is-G-skel(s) = is-skel(s)

A(VT) [is-final-skel°T(s) 3 is-G-symbolos-symbol<'T(s)

Ais-prod-skel'>T(s) ̂ is-G-prod<>immed-prod'>T(s)

A(3T')[s-substoT'OT(S)]]

(Note that the last conjunct defines the condition terminating

"pruning".)

Finally, the group of functions which synthesize parse trees

and skeleton trees are introduced. These are:

tree(s,£) = p (<s-symbol: s', <s-sub-list: £')

where is-G-symbol(s) A (is-parse-list(£) V is-skel-list(£));

final-skel(s,f) = y (<s-symbol: s', <s-subst: f')

where is-G-symbol(s) A (f V—if);

final-parse(s) = y (<s-symbol: s')

where is-G-term(s). The LISP functions cons, car, and cdr are used

for operations on lists.

108 (2.5.1)

2.5.1 Functions for Matching

The functions which perform the matching operation are match,

matchlist, matchindefinite, matchindefinite list, finish, and checkmatch,

assisted by join, treel, and lookup.

The key to understanding the matching operation is the concept of

failure of a pattern tree to match a parse tree. Failure for final

and production patterns is quite simple: the former fails if its symbol

and that of the parse tree are not equal; the latter falls for the same

reason, or if its sublist and that of the parse tree are not the same

length, or if some pattern tree in the sublist fails. They also fall

if they are indexed, a match of their variable has previously occurred,

and the parse tree is not equal to that previously matched.

Failure for indefinites is more complex, since the pattern trees in

an indefinite list undergo conditional matching. Thus a pattern tree

in an indefinite list may fail for the reasons given above or because

an adjacency relation (cf. section 2.3.1) is violated; if not, it con

ditionally matches. This conditional match, however, may ultimately

fail because a pattern tree later in the indefinite list fails, or

because some pattern tree later in the SD fails. If a conditional

match fails, the match is reattempted later in the parse tree, subject

to the satisfaction of the adjacency relations for indefinites. (Here

"later" is to be understood as "further down, or further to the right".)

The m.atching functions are defined below. The identifiers used

are largely self-explanatory, except for rest of sd, rest of parse, and

unmatched. The concept of failure outlined above necessitates main-

(2.5.1) 109

taining the matches of all pattern trees in indefinite lists as an

unbroken sequence of recursive function calls until the entire SD has

been matched. Therefore, auxiliary stacks are needed to pass down

unexamined parts of the SD and parse tree; these are rest of sd and

rest of parse. Unmatched implements the consistency condition for

indefinite trees by indicating when no substitutable skeleton has yet

been added to a skeleton list. All of the functions return a list of

the form cons[X,env], where X is the atom T if no indefinite pattern

has been matched lower in the pattern tree. If such an indefinite

pattern has been matched, X is a list of one or more partially con

structed skeleton trees.

110 (2.5.1)

match[sd; parse; env; rest of sd; rest of parse] =

[s-symbol[parse] = s-symbol[sd] ->•

checkmatch [var [sd]; -|is-indef-pat [sd], parse;

[is-final-pat[sd] •* env;

is-indefTpat [sd] ->• matchindef initelist [s-indef-list [sd] ;

llst[parse]; env; F; rest of sd; cons[DNI;

rest of parse]];

T -i- matchlist[s-sub-Iist[sd]; s-sub-llst[parse]; env;

rest of sd; rest of parse]

]];

T -t NIL

]

matchlist[sd list; parse list; env; rest of sd; rest of parse] =

[null[sd list] ->• [null[parse] -* env; T ->• NIL];

null [parse] -»• NIL;

T -t X[[envl];

[null[envl] ->• NIL;

car[envl] ->• matchlist [cdr [sd list]; cdr[parse list];

envl; rest of sd; rest of parse];

T ->• envl

]

] [match[car[sd list]; car[parse list]; env;

cons[cdr[sd list]; rest of sd]; cons[cdr[parse list];

rest of parse]]]

]

(2.5.1)

matchindefinite[indef list; parse; env; rest of sd; rest of parse] =

A[[indef listl];

[null [indef listl] ->- NIL;

T -• A [[envl];

[null[envl] ->• treel[s-symbol[parse];

matchindefinitelist[indef list;

s-sub-list[parse]; env; T; rest of sd;

rest of parse]];

car [envl] -•

A[[env2];

[null[env2] ->• treel [s-symbol[parse];

matchindefinitelist[indef list;

s-sub-list[parse]; env; T;

rest of sd; rest of parse]];

T -<• join[f inal-skel [s-symbol[parse] ;

T] ; env2]

]
] [matchindefInitelist[cdr[indef listl];

car[rest of parse]; envl; F;

rest of sd; cdr[rest of parse]]];

T ->• join[final-skelIs-symbol[parse] ; T] ; envl]

]
] [match[car[indef listl]; parse; env,

cons[cons[IND; cdr[indef listl]]; rest of sd];

rest of parse]]

]

] [[is-FREE[car[indef list]] •* cdr[indef list];

T -• indef list

112 (2.5.1)

matchindefinitelist[indef list; parse list; env; unmatched;

rest of sd; rest of tree] =

[null[parse list] -•

[unmatched ->• NIL;

T -*• join[NIL; matchindef initelist [indef list;

car[rest of parse]; env; F; rest of sd;

cdr[rest of parse]]];

];
is-DNI[parse list] ->•

[null[indef list] Vis-FREE[car[indef list]]

Anull[cdr[lndef list]] ̂ •

finish[car[rest of sd]; car[rest of parse]; env;

cdr[rest of sd]; cdr[rest of parse]];

T ->• NIL

];

T -> A [[envl];

[is-FREE[car[indef list]] A null[envl] -*•

join[final-skel[s-symbol[car[parse list]]; F];

matchindefinitelist[indef list; cdr[parse list];

env; unmatched; rest of sd; rest of parse]];

T ->• envl

env;] [matchindefinite[indef list; car[parse list];

rest of sd; cons[cdr[parse list]; rest of parse]]]

(2.5.1) 113

finish[sd list; parse list; env; rest of sd; rest of parse] =

[null[rest of sd] -•

[null[rest of parse] •* cons[NIL; cdr[env]];

T ->• NIL

];

null[rest of parse] ->• NIL;

null[sd list] -*

[null[parse list] •* finish [car [rest of sd] ;

car[rest of parse]; env; cdr[rest of sd];

cdr[rest of parse]];

T -* NIL

];

T -• A [[envl];

[null[envl] ->• NIL;

car[envl] -»• finish[car[rest of sd];

car[rest of parse]; envl; cdr[rest of sd];

cdr[rest of parse]];

T •* envl

]
] [[is-IND[car[sd list]] •* ^

matchindefinitelist[cdr[sd list]; parse list;

env; F; rest of sd; rest of parse];

T -• matchlist[sd list; parse list; env; rest of sd;

rest of parse]

]]

114 (2.5.1)

checkmatch[variable; nonindef; parse; env] =

[null[env] ->• NIL;

ls-n[s-index[variable]] -»•

[nonindef -• env;

T -1- cons [cdr [car [env]]; cdr[env]]

1;
T -• A [[env elet];

[null[env elet] •* cons(

[nonindef -<• car [env]; T ->• cdr [car [env]]];

cons[env-elet[variable; parse;

[nonindef ->• NIL; T -* car [car[car [env]]]]];

cdr[env]]];

parse = s-parse[env elet] ->• env;

T ->• NIL

]

] [lookup[varlable; cdr[env]]]

]

join[skel; env] =

[nuH[env] ->• NIL;

null[skel] * cons[cons[skel; car[env]]; cdr[env]];

T -̂ cons [cons [cons [skel; car [car [env]]]; cdr [car [env]]];

cdr[env]]

]

treel[symbol; env] =

[null[env] -^ NIL;

T ->• cons [cons [cons [tree [symbol; car [car [env]]];

car[cdr[car[env]]]]; cdr[cdr[car[env]]]]; cdr[env]]

]

(2.5.2) 115

2.5.2 Functions for Changing

The functions which perform the changing operation are change,

ahangelist, changeindefinite, and changeindefinitelist, assisted by

lookup, applytrset, and applysubtrseq. These latter two functions are

sequencing functions and are described in section 2.5.3. For the

purpose of understanding the changing functions, they may be considered

to be the identity function on their first argument.

The operation of the changing functions is straightforward. Note

that the functions for indefinites employ the indefinite skeleton of an

environment element as a kind of "template" to locate the nodes in the

parse tree of that element where the parse trees corresponding to non-

free symbols in the indefinite list must be substituted.

The changing functions are defined below; again the identifiers

used are self-explanatory. The functions in all cases return the

partially constructed parse tree, which in the case of the indefinite

functions is prefixed by the unused remainder of the indefinite list of

the indefinite pattern guiding construction.

116 (2.5.2)

change[sc; env; tr set] i

[is-indexed[sc] •*

X[[env elet];

[null[env elet] •* s-parse[car[cdr[rplacd[env; cons

[env-elet[var[sc]; generate[s-symbol[sc]];

NIL]; cdr[env]]]]]];

is-indef-pat [sc] -»•

cdr[changeindefinite[s-indef-list[sc];

s-indef-skel[env elet]; s-parse[env elet];

env; tr set]];

T -t s-parse[env elet]

]
] [lookup[var[sc]; env]];

is-f inal-pat [sc] •* sc;

T ->• tree[s-symbol[sc]; changelist [s-sub-list [sc]; env; tr set]]

]

changelist[sc list; env; tr set] E

[null[sc list] ->• NIL;

T ->• cons [applytrset [applysubtrseq [change [car [sc list]; env;

tr set]; s-subtrseq[car[sc list]]; env; tr set];

tr set]; changelist[cdr[sc list]; env; tr set]]

]

(2.5.2) 117

changeindefinite[indef list; skel; parse; env; tr set] =

A[[indef listl];

[is-final-skel[skel] ->•

[s-subst [skel] -* cons [cdr [indef listl];

applysubtrseq[change[car[indef listl]; env;

tr set]; s-subtrseq[car[indef listl]]; env;

tr set]]:

T ->• cons [indef listl; parse]

]

T -• A [[indef cum parse list];

cons[car[indef cum parse list];

tree[s-symbol[skel]; cdr[indef cum parse list]]]

] [changeindefinitelist[indef listl;

s-sub-list[skel]; s-sub-list[parse]; env;

tr set]]

]

] [[null[indef list] V -lis-FBtEE[car[indef list]]->• indef list;

T ->• cdr[indef list]

]]

changeindefinitelist[indef list; skel list; parse list; env; tr set]

[null[skel list] -• cons[indef list; NIL];

T -• A [[indef cum parse];

A[[indef cum parse list];

cons[car[indef cum parse list];

cons[applytrset[cdr[indef cum parse]; tr set];

cdr[indef cum parse list]]]

] [changeindefinitelist[car[indef cum parse];

cdr[skel list]; cdr[parse list]; env; tr set]]

] [changeindefinite[indef list; car[skel list];

car[parse list]; env; tr set]]

]

118 (2.5.2)

One should note that the manner in which generated symbols

are implemented in change is not quite faithful to the semantics

of generable symbols as given by the definitions of sections 2.2

and 2.3. This may be seen by considering a generable symbol which

occurs in the SC of a transformation, and also in the SC of a subtrans

formation in it. If these symbols have the same index, they should

represent the same parse tree, but this will not be the case for

the above definition of change if the symbol occurs later in the

SC of the transformation than does the subtransformation which uses

it. This discrepancy could easily be corrected by prefacing the

sc-tree of each transformation (and subtransformation) by a list

of the generable symbols appearing in it, and generating the corres

ponding parse trees for these symbols and adding them to the environ

ment before starting the changing operation. For the examples of

section 3 this discrepancy has no effect, since in no case does the

above condition hold.

(2.5.3) 119

2.5.3 Functions for Sequencing

The functions which perform the sequencing operation are: applysub-

trlist, searchlist, applytrset, searchset, applytrsetrec, applytrset-

realist, applytrsetseq, and applysubtrseq.

Those functions whose names begin with "apply" correspond roughly

to the predicates of section 2.3.2 whose names end in "-result". How

ever, the function applysubtrlist corresponds to both of the predicates

Is-subtrlist-result and is-trlist-result. It has the basic form of

is-subtrlist-result (with global environment and Markov sequencing).

When it is employed for is-trlist-result, it is supplied the null

environment, and advantage is taken of the equivalence of Markov sequenc

ing and recursive reapplication of the transformation set for the top

node of the parse tree (cf. the discussion in section 1.1.2). The

functions searchlist and searchset locate the appropriate element of a

transformation (or subtransformation) list and transformation set,

respectively. (Transformation sets, of course, are represented by a

list of transformation lists.)

The application of a transformation set sequence to a parse tree

is initiated by calling applytrsetseq.

applysubtrlist[parse; tr subtr list; global env; tr set] E

A[[changed parse];

[null [changed parse] ->• parse;

T -• applysubtrlist [changed parse; tr subtr list;

global env; tr set]

]

] [searchlist[parse; tr subtr list; global env; tr set]]

120 (2.5.3)

searchlist[parse; tr subtr list; global env; tr set] =

[null[tr subtr list] -^ NIL;

T •* A [[env];

[null[env] ->• searchlist [parse; cdr[tr subtr list];

global env; tr set];

T ->• applysubtrseq [change [s-sc [car [tr subtr list]];

env; tr set]; s-subtrseq[s-sc[car[

tr subtr list]]]; env; tr set]

]

] [match[s-sd[car[tr subtr list]]; parse; global env;

(NIL); (NIL)]]

]

applytrset[parse; tr set] s

A[[tr list];

[null[tr list] •* parse;

T -t- applysubtrlist [parse; tr list; (NIL); tr set]

]

] [searchset[s-symbol[parse]; tr set]]

searchset[symbol; tr set] =

[null[tr set] ->• NIL;

s-symbol[s-sd[car[car[tr set]]]] = symbol ->• car[tr set];

T •* searchset [symbol; cdr[tr set]]

]

(2.5.3) 121

applytrsetrec[parse; tr set] =

A[[tr list];

[null[tr list] -• tree [s-symbol[parse];

applytrsetreclist[s-sub-list[parse]; tr set]];

T -»• applysubtrlist [tree[s-symbol [parse] ;

applytrsetreclist[s-sub-list[parse]; tr set]];

tr list; (NIL); tr set]

]
] [searchset[s-symbol[parse]; tr set]]

applytrsetreclist[parse list; tr set] s

[null[parse list] ->• NIL;

T -*• cons [applytrsetrec [car [parse list]; tr set];

applytrsetreclist[cdr[parse list]; tr set]]

]

applytrsetseq[parse; tr set seq] E

[null[tr set seq] -<• parse;

T ->• applytrsetseq[applytrsetrec [parse; car[tr set seq]];

cdr[tr set seq]]

]

applysubtrseq[parse; subtr seq; global env; tr set] 5

[null [subtr seq] ->• parse;

T -• applysubtrseq [applysubtrlist [parse; car[subtr seq];

global env; tr set]; cdr[subtr seq]; global env; tr set]

]

122

(3) 123

3. Applications of Intra-Grammatical Transformations

In this section I discuss the application of intra-grammatical

transformations to the solution of two programming language defini

tional problems: the problem of (static) identifier denotation,

which is the problem of associating an appearance of a variable in

a program with the applicable declaration of that variable: and the

problem of for statement optimization, which is the problem of deter

mining when certain computations can be moved from a point within

the controlled statement of a for statement to a point outside it,

and so moving them.

In both cases the solutions are given for a slightly modified

version of the language Algol 60, appropriately extended to cover

new constructions introduced in the solution of these problems. The

grammar for this language is listed in section 6.1. In addition

to the extensions necessary for these exa^nples (discussed in sections

3.1 and 3.2), modifications were made to the Algol 60 grammar as

given in the Revised Report [30] to make it compatible with the

Stanford XPL compiler generator system [28] used to construct a

parser for programs and transformations. These modifications are

summarized at the beginning of section 6.1. Throughout the remainder

of this section the use of the grammar of section 6.1 is to be under

stood. (However, symbols such as 'BEGIN', enclosed in escape symbols

in section 6.1, will continue to be written with underlining (begin),

following the usual Algol 60 convention.)

124 (3.1)

3.1 Transformations for Identifier Denotation

The problem of identifier denotation in Algol 60 is the problem

of associating each occurrence of an identifier in a program with

the appropriate declaration of that identifier, taking into account

the scope rules of declarations. This problem may be divided into

static and dynamic identifier denotation, the former depending on

the lexicographic order of occurrence of blocks in the program,

and the latter depending on the order of execution of the blocks.

It is the static identifier denotation problem which is treated

here. (In view of the theorem of section 2.4, a transformational

specification of dynamic identifier denotation is also possible,

but it is likely to be considerably less elegant than that of static

denotation since the denotation of recursive procedure calls requires

that it either interact with the specification of program semantics

or specify them itself. For an idea of the complication involved,

see de Bakker [4].) The following subsection describes the theory

underlying the identifier denotation transformations, and section

3.1.2 describes the transformations themselves.

(3.1.1) 125

3.1.1 Theory of Identifier Denotation

The solution for the static identifier denotation problem

developed here is essentially a transformational formulation of

the algorithms for static identifier denotation described by Boyle

and Grau [6] (except that no attempt is made to maintain the ordering

of serial numbers as is done in those algorithms). Since reference

[6] contains an extensive discussion of the identifier denotation

problem and a review of the pertinent literature, these will not

be repeated here.

Identifier denotation is carried out by substituting for each

<identifier token' in a block a <denotation' (cf. section 6.1)

consisting of a <serial number' (as always, distinct from all pre

viously used serial numbers) and a <type indicator' which is derived

from the declaration of the identifier. The declaration itself

is replaced by dec followed by the appropi>iate ^denotation'. In

the case of array, switch, and procedure declarations, the information

which they contain in addition to type is moved to the <compound tail'

of the block. Thus after application of the identifier denotation

transformations to a program, each <block head' in the program

consists simply of begin followed by a list of declarations (separated

by semicolons) of the form dec <denotation'.

For the denotation of a <simple variable' an appropriately simple

transformation suffices, assuming that all <type declarations's have

been transformed so that their <type list's contain only one element:

126 (3.1.1)

<block'}

'SD'

<block head' "1"

(? <declaration' } <type' "1" <identifier' "1" } ? } ;

<compound tail' "I"

<block'

} <block head' "1"

{ ? <declaration' } dec <serial number' "1"

<type' "1" } ?) ;

<compound tail' "1"

}(
'SD'

<block' "II" { ? <identifier' "1" ? }

<block' "11"

{ ? <identlfier' } <serial number' "1" <type' "1" } ? }

'SC'}

•sc'}

The denotation of arrays is somewhat more complicated than that

of simple variables, since the information in the <bound pair list'

of the array declaration must be removed from the declaration. This

information is placed in the <actual parameter list' of an explicit

call to the (new) standard function allocate, executed for its side

effect, which is to allocate the required amount of storage indicated

by its parameters. (It is assumed that allocate is capable of

accepting a variable number of parameters.) Thus the following block

containing an array declaration:

(3.1.1) 127

begin array A[l:n, l:m, -2xk:2xk];

A[1,1,0] := 1 (1)

end

is replaced by:

begin dec #1 real array;

allocate (//I real array, 1, n, 1, m, -2xk, 2xk) ;

//I real array [1, 1, 0] := 1

end

(The transformation lists involved in this conversion are the

<array segment'-, <array list'-, <block head'-, and <block'-

transformation lists.)

The denotation of labels is quite similar to that of simple

variables, but requires the creation of a declaration for the serial

number denoting the label, since, of course, there are no label declar

ations in Algol 60. Another aspect of laljel denotation is concerned

with implementing the restriction of section 4.6.6 of the Revised

Report, which requires that labels labeling statements within the

controlled statement of a for statement be local to the controlled

statement. This restriction is implemented by searching the con

trolled statement for a (undenoted) label definition, and if one is

found, converting the controlled statement into a block.

Switches are denoted in a manner similar to that of arrays,

with the expressions constituting the <switch list' being moved into

the <actual parameter list' of allocate. (Here allocate is assumed

to reserve the necessary storage locations and initialize them to

128 (3.1.1)

the corresponding expressions.)

The denotation of procedure declarations is the most complicated

aspect of identifier denotation. As discussed in [6], it begins

by imbedding the <procedure body in a block containing a result

declaration for the procedure identifier; this insures that the

<procedure body behaves as if it were a block, as required by section

5.4.3 of the Revised Report, and also provides an identifier to receive

the result of a function procedure.

For a formal parameter called by value, a corresponding local

variable is declared with a <denotation' whose <type indicator'

is derived from the <specification part' of the procedure, and this

<denotation' is substituted for the identifier of the formal parameter

throughout the <procedure body. If the formal parameter is an array

called by value, this <denotation', followed by the formal parameter

itself, is placed in the <actual parameter list' of a call to allocate.

(Here allocate is assumed to reserve an amount of storage corres

ponding to that of the formal parameter and to initialize the elements

of it to the values of the corresponding elements of the formal

parameter.) If the formal parameter called by value is not an array,

the <denotation' is placed in the <left part' of an assignment state

ment whose <expression> is the formal parameter itself.

Finally, each formal parameter (whether called by name or by

value) is declared with a <denotation' of the form <serial number'

formal, and is so denoted throughout the <procedure body. (Of

course, for parameters called by value this <denotation' only appears

(3.1.1) 129

in the declaration and the statement assigning the value to the local

identifier described above.)

Thus the following procedure:

integer procedure p(a,b ,c);

value a,b; real a; array b; (2)

p := ̂ c <̂ 0 then 1 else entier (a+b[l]xc) + p(a,b,c-l);

is transformed into:

integer proc p;

begin dec #1 integer result;

dec #2 real array;

dec #3 real;

dec #4 formal;

dec #5 formal;

dec #6 formal;

#3 real := //4 formal;

allocate (#2 real array, #5 formal) ;

#1 integer result := IĴ #6 fongal <_ 0 then 1 else

entier (#3 real + #2 real array [1] x #6 formal)

+ p (#3 real, #2 real array, #6 formal -1);

return #1 integer result

end

(The above changes are accomplished by the <procedure declaration'-

transformation list.) The final step in denotation of a procedure

declaration (performed by a member of the <block'-transformation

list) is to denote the procedure identifier throughout the block,

and move the procedure body to a skip statement at the beginning

of the <compound tail' of the block. (The skip statement is assumed

130 (3.1.1)

to cause skipping of the execution of the <procedure body upon entry

to the block.)

The discussion of the theory of identifier denotation is thus

complete, except to note that the bottom-up sequencing rule for

transformation sets guarantees that the identifiers in nested blocks

will be denoted in the proper order, thus automatically Implementing

the identifier scope rules of Algol 60 (cf. Section 6.2).

(3.1.2) 131

3.1.2 The Identifier Denotation Transformation Set

At the end of this section is listed the identifier denotation

transformation set used with the computer implementation of IGTs

to perform identifier denotation. The transformation lists comprising

this transformation set and their contribution to identifier denotation

will be discussed briefly.

The <block head'-transformation list converts type and array

declarations to "single form", in which each contains the declaration

of only one identifier. Also, it replaces all occurrences of the

abbreviation array in declarations by its full form real array.

The <array segment'-transformation list converts the <bound

pair list' of an array declaration into a call on the allocate standard

function. This is done "in place" l>y placing the call to allocate

in a dummy <bound pair'.

The <array llst'-transformation list'helps the conversion of

array declarations to single form by replicating the bounds informa

tion among all identifiers in an <array segment'. Note that the

syntax insures that the <array segment'-transformation list applies

before the replication of the bounds information takes place, thus

minimizing the amount of transformation performed.

The operation of the <procedure declaration'-transformation

list is discussed in section 3.1.1. Note that it contains separate

transformations for functions and "proper" procedures; this minimizes

132 (3.1.2)

the use of indefinites.

<specifier'{'SD' array ==' real array 'SC')

in subtransformations l.B.l and 2.A.1 are an alternative to creating

a <specifier'-transformatlon list to make this change. (The latter

would be highly inefficient because of the number of <specifier's

created as <type indicator's during identifier denotation.)

The <block'-transformation list performs the actual denotation of

the various kinds of Identifiers (cf. section 3.1.1).

The <for statement'-transformation list insures that labels

defined in the controlled statement of a for statement are local

to it (cf. section 3.1.1). After the block is created and the first

such label is denoted, the remainder are denoted by the <block'-

transformation list.

The following points should be noted about this transformation

set: First, it does not attempt to "diagnose" violations of the

Algol 60 scope rules. This lack is not serious except for local

Identifiers occurring in the <bound pair list' of an array declaration,

which will be denoted in the same manner as if they had occurred

in a procedure or switch declaration. This scope violation could

be trapped by adding at the end of the <block'-transformation list

a transformation which converts any <denotation's in the second or

following parameters of allocate to a standard identifier indicating

this error had occurred (taking care not to destroy switch and value

*~ '
Subtransformations l.B.l and 2.A.lare already the most complex trans
formations (in terms of indefinites) in the examples of section 3.

(3.1.2) 133

array calls to allocate, however). The <identifier token's of

undeclared identifiers, including those of identifiers used outside

the scope of their declarations, of course remain in the program

after all properly declared <identifier token's have been replaced

by <denotation's; they are thus self diagnosing (cf. section 6.2).

Second, this transformation set does not denote own variables.

This is a consequence of a "glitch" in the grammar of section 6.1

and could be corrected by adding a production:

<type indicator' : := own <type' | own <type' array

and making appropriate modifications to the various transformation

lists. As the static denotation of own variables need not differ

from that of non-own variables, this change was not deemed worthwhile.

The transformation lists comprising the identifier denotation

transformation set follow below; examples of its application to pro-

grams are given in section 6.2.

134 (3.1.2)

•COMMENT' BLKHDTRS VFRSIONl. TRANSFORMATIONS TO CONVERT DECLARATIONS
TO SINGLE FORM;

<BLOCK HEAO>

a

•COMMENT* 1. CONVERT TYPE DECLARATIONS TO SINGLE FORM;

•SO*
<BLOCK HEAD> "l" : <LOCAL OR OWN TYPF> "1" <SIMPLF VARIABLE> "1" ,
<TYPE LIST> "1"

==>
<BLOCK HEAO> " I " : <LOCAL OR OWN TYPE> " 1 " <SIHPLE VARIABLE> " I " ;
<LOCAL OR OWN TYPF> " l " <TYPF L I S T > " l "

• S C

'COMMENT^ 2 . CONVERT ALL ARRAY DECLARATIONS TO SINGLE FORM;

• S D '
<BLOCK HEAD> "1" ;
<LOCAL OR OWN TYPE> "1" 'APRAY^ <ARRAY LIST> "l" ,

<ARRAY SEGMENT) "l"
==>

<BLOCK HEAD> "1" ;
<LOCAL OR OWN TYPE> "l̂ * 'ARRAY' <ARRAY LIST> "l" ;
<LOCAL OR OWN TYPE> "1" 'ARRAY' <ARRAY SEGMENT) "l^*

•SC

•COMMENT* 3. CONVERT TYPE DECLARATIONS TO SINGLE FORM;

•SD'
•BEGIN* <LOCAL OR OWN TYPE> "l" <SIMPLE VARIABLE) •'1" ,
<TYPE L I S T) " l "

==)
•BEGINS <LOCAL OR OWN TYPE) "1" <SIMPLE VARIABLE) " l ' ^ ;
<LOCAL OR OWN TYPE) • • 1 " <TYPE L I S T) " l ' ^

• S C

•COMMENT^ 4 . CONVERT ALL ARRAY DECLARATIONS TO SINGLE FORM;

• S D '
•BEGINS

<L0C4L OR OWN TYPE) • • I " •ARRAY^ <ARRAY L I S T) »l» .
<ARRAY SEGMENT) • • l ^ '

==>
• B E G I N S

<LOCAL OR OWN TYPE) "l" "ARRAY* <ARRAY LIST) "l'^ •
/LOCAL OR OWN TYPE) "1- *ARRAY* <ARRAY SEGMENT) "1"

(3 .1 .2) 135

• C O M M E N T * 5 . C O N V E R T ARRAY TO REAL A R R A Y ;

• S O ^

= =)
<RLOCK HEAD) "1" ; 'ARRAY^ <ARRAY LIST) "l'^

<eLOCK HEAD) "1" ; •REAL^ •ARRAYS <ARRAY LIST) "1"
•SC^

•COMMENT^ 6 . C O N V E R T ARRAY TO REAL A R R A Y ;

• S D ^

' I J E G I N ' • A R R A Y S <ARP AY L I S T) ' • l ^ '

• P E G I N ^ • R E A L ^ • A R R A Y ^ < A R R A Y L I S T) " 1 "

• S C ^
X

136 (3.1.2)

•COWMENT^ ARSEGTRS VFRSI0N3. TRANSFORMATIONS TO CREATE ALLOCATE CALLS
FRO" THE BOUND PAIRS IN AN ARRAY SEGMENT;

<ARRAY SEGMENT)

•COMMENT' 1, PLACE MARKER TO TERMINATE APPLICATION OF <ARRAY SEGMENT)
TRANSFORMATIONS;

•SO'
<IDENTIFIER> "1" (/ <ROUND PAIR LIST) "l"
S 1 : ALLOCATE (<ACTUAL PARAMETER LIST)) % /)

= =)
<IOENTIFIFR) "l" •{ / ! • <BOUND PAIR LIST) "I" /)

•SC

•COMMENT' 2t *̂OVF UPPER AND LOWER BOUNDS TO THE FORMAL PARAMETER
LIST OF THE ALLOCATE PROCFDURE:

•SD*
<IOENTIFIFR> ••l" (/ <BOUND PAIR LIST) "l"
S <60UMD PAIR LIST)

a) 1 : ALLOCATE I <ACTUAL PARAMETE'? LIST) "l") ,
<bXPRESSION> "l" : <EXPRESSICN) "2"

? ?
% /)

= = >
<inENTIFIER> "1" (/ <eOUND OAIR LIST) "1"
a <RnUND PAIR LIST)

3 I : ALLOCATE (<ACTUAL PARAMETER LIST) "1" ,
<£XPRESSIDN> "1" , <EXPRESSION> "2")

% ?

% /)
'SC

•COMMENT' 3, CREATE AN ALLOCATE CALL IN A BOUND PAIR LIST;

•SO'
< I D E M T I F I F R) " l " (/ <BDUNO PAIR L I S T) " 1 "
3 <BOUNO "AIR HEAD) 3 <EXPRESSION) " I " : % <EXPRESSION) " 2 " 7 ? / I

< I D E N T I F I E R > " l " (/ <ROUNO PAIR L I S T) " 1 "
a <BOUND PAIR HEAD) 3 <EXPRESSION) S I % : % <FXPRESSION)

a ALLOCATE (< I O E N T I F I E R > " 1 " , <EXPPESSION) " l ^ '
<EXPRESSrON> ••?••) • i .

X ?
X /)

•SC^
%

(3.1.2) 137

•COMMENT^ ARLSTTRS VERSIONl. TRANSFORMATIONS TO ASSOCIATE A BOUND PAIR
LIST WITH EACH IDENTIFIER IN AN ARRAY SEGMENT;

<ARRAY LIST)
9

•COMMENT^ 1. CONVERT THE ARRAY SEGMENT TO SINGLE FORM;

•SD"
<ARRAY LIST) "l̂ " , <IOENTIFIER) •'l̂ ' , <ARRAY SEGMENT) ••l'̂
3 ? •(/!• <BOUN0 PAIR LIST) ••l" /) %

==)
<ARRAY LIST) "!'• , <IDENTIFIER> "l̂ " •(/!• <BOUND PAIR LIST) "l" It .
<ARRAY SEGMENT) "l"

•SC^

•COMMENT* 2. CONVERT THE ARRAY SEGMENT TO SINGLE FORM;

•SD'
<IDENTIFIER> "I" , CARRAY SEGMENT) ••I"
a ? •(/!• <B0UN0 PAIR LIST) "1" /» %

= = >
<I0FNTIFIER) ••l" •(/!• <B0UND PAIR LIST) ••l'̂ /) ,
<ARRAY SEGMENT) ••!••

'SC
%

138 " . 1 . 2)

•COMMENT. PROECTRS VERSI0N6. DENOTATION OF FORMAL AND VALUE PARAMETERS
" " N P R O C E D U R E S ; W I T H INSERTION OF RESULT DECLARATIONS;

<PROCE0URE DECLARATION)
a
.rOMMENT' 1. INSERTION OF RESULT DECLARATION, <RETURN STATEMENT),

ANS DENOTinON OF RESULT IDENTIFIERS IN <TYPE) PROCEDURES;

'^° <TYPE) "l" 'PROCEDURE^ <PROCEDURE HEADING) "l.̂
a <IDENTIFIER) "I" ? 5! <STATEMENT> "1"

= = >
<PR0CE0URE DECLARATION)
a <TYPE> "l" 'PROC <PROCEDURE HEADING) ••l"

•BEGIN' 'DEC^ <SERIAL NUMBER) "1" <TYPe) "1" •RESULT';
<STATEMENT> "l"

a
•COMMENT' l.A.l. DENOTE ASSIGNMENTS OF RESULT TO <TYPE) PROCEDURE

IDENTIFIER;

•SD'
<STATEMENT) "U" 3 ? <IOENTIFIER) "1" := ? %

==>
<STATEMENT> "11"
a 7 <IDENTIFIER>

a <SERIAL NUMBER) '•I" <TYPE> ••1" •RESULT^ S := ?
%

•SC^
%

; •RETURN^ <SERIAL NUMBER) "1" <TYPE) ••1" •RESULT^
•ENO^

%
S
'COMMENT' l.B.l. DENOTATION OF ARRAYS CALLED BY VALUE;

'SD'
<TYPE) 'PROC <IDENTIFIER) <FORMAL PARAMETER PART) "ll" ;
•VALUE' <IOENTIFIER LIST) "11"
a ? <IDENTIFIER> "11" 3 <IDENTIFIER TOKEN) % ? % %
<SPECIFICATION PART) "11"
a ? <SPECIFIER) "11" a ? 'ARRAYS % <IDENTIFIER LIST)

a ? <IDENTIFIER) "11" 7 % 7
% <BLOCK HEAD) "11" ; <COMPOUND TAIL) "11"

= =)
<TYPE) "1" •PROC^ <IDENTIFIER) "1" <FORMAL PARAMETER PART) "11";
•VALUED <IDENTIFIER LIST) "11"
a ? <IOENTIFIEP> a <SERIAL NUMBER) "11" <SPECIFIER) "11" % t % •*
<SPECIFICATION PART) "11"

(3.1.2) 139

<BLnCK HEAD) "11" ; •DEC^ <SERIAL NUMBER) "11" <SPECIFIER) "11"
a 'SD' •ARRAYS = = > •REAL^ 'ARRAY^ •SC • % ;
ALLOCATE (<SERIAL NUMBER) "11" <SPECIFIER> "11"
a 'SD' 'ARRAY' ==> "REAL^ 'ARRAY' •SC• % ,

<IDENTIFIER) "11") ;
<CaMPOUNn TAIL) "11"

a

•COMMENT' I.B.l.A.l. DENOTE OCCURRENCES OF THE VALUE ARRAY;

•SD^
<C0MP0UND TAIL) "111" a 7 <IDENTIFIER> "11" 7 %

= = >
<COMPnUN0 TAIL) "HI"
a 7 <I0ENTIFIER) a <SERIAL NUMBER) "11" <SPECIFIER> "11"

a •SD' 'ARRAYS ==> 'REAL^ 'ARRAY' "SC^ « J 7
%

•SC
X

•sc
•COMMENT' 1.6.2. DENOTATION OF FORMAL PARAMETERS CALLED BY VALUE;

•SO'
<TYPE> 'PROC^ <IDENTIFIER) <FORMAL PARAMETER PART) "11" ;
'VALUE' <IDENTIFIFR LIST) "11"
a 7 <IDFNT1FIER) "11" a <IOENTIFIER TOKEN) % 7 % ;
<SPEC1FICATI0N PART) "11"
a 7 <SPECIFIER> "11" <IDENTIFIER LIST)

a 7 <IDENTIFIER> "11" 7 1 7
% <BLOCK HEAD) "11" ; <CnMPOUN0 TAIL) "11"

= =)
<TYPE> "1" 'PROC <IOENTIFIFR) "1" <FORMAL PARAMETER PART) "11";
'VALUF' <IDENTIFIFP LIST) "11"
S 7 <IDENTIFIER> 3 <SERIAL NUMBER) "11" <SPEC1FIER> "11" t 7 % i
(SPECIFICATION PART) "11"
<BLOCK HEAD) "11" ; 'DEC <SERIAL NUMBER) "11" (SPECIFIER) "11";

(SERIAL NUMBER) "11" (SPECIFIER) "11" := (IDENTIFIER) "11" ;
(COMPOUND TAIL) "11"

a

'COMMENT' I.P.2.A.I. DENOTE OCCURRENCES QF THE VALUE PARAMETER:

'SD'
(COMPOUND TAIL) "111" 3 7 (IDENTIFIER) "11" 7 ?

= =)
(COMPOUND TAIL) "111"
a 7 (IDENTIFIER) a (SERIAL NUMBER) "11" (SPECIFIER) "11" % 7 %

'SC
%

'SC
X

140 (3 .1 .2)

a

'COMMENT' l . C . l . DENOTATION OF FORMAL PARAMETERS;

'SD'
<TYPF) 'PROC (PROCEDURE HEADING) "21"
a (IDENTIFIER) ((FORMAL PARAMETER LIST)

a (FORMAL PARAMETER) a (IDENTIFIER) "21" %
(PARAMETER DELIMITER) (FORMAL PARAMETER) "21"

t 7
% (BLOCK HEAD) "21" ; (COMPOUND TAIL) "21"

= =)
(TYPE) "1" •PROC (PROCEDURE HEADING) "21"
a (IDENTIFIER) "1" ((FORMAL PARAMETER LIST)

3 (FORMAL PARAMETER) "21" % 7
% (BLOCK HEAD) "21" ; •DEC^ (SERIAL NUMBER) "21" •FORMAL* ;
(COMPOUND TAIL) "21"
a
•COMMENT^ I.e.l.A.l. DENOTE OCCURRENCES OF FORMAL PARAMETER;

•SD^
(COMPOUND TAIL) "121" 3 7 (IDENTIFIER) "21" 7 %

==>
(COMPOUND TAIL) "121"
a 7 (IDENTIFIER) 3 (SERIAL NUMBER) "21" 'FORMAL^ % 7 X

'SC
X

'SC

•COMMENT^ I.e.2. DENOTATION OF FORMAL PARAMETERS;

•SD^
(TYPE) •PROC^ (PROCEDURE HEADING)
3 (IDENTIFIER) I (FORMAL PARAMETER) 3 (IDENTIFIER) "21" %) •> X
(BLOCK HEAD) "21" ; (COMPOUND TAIL) "21"

= =)
(TYPE) "1" 'PROC^ (IDENTIFIER) "I" ;
(BLOCK HEAD) "21" ; 'DEC* (SERIAL NUMBER) "21" •FORMAL^ ;
(COMPOUND TAIL) "21"
3

•COMMENT* I.C.2.A.I. DENOTE OCCURRENCES OF FORMAL PARAMETER;

•SD^

(COMPOUND TAIL) "121" 3 ? (IDENTIFIER) "21" ? X

(COMPOUND TAIL) "121"

•SC^' ' <IOENTIFIER) a (SERIAL NUMBER) "21" •FORMAL' % 7 %

X
•SC

(3.1.2) 141

t
• S C

•COMMENT' 2 , INSERTION OF RESULT DECLARATION I N NON- (TYPE) PROCEDURES;

•SD '
•PROCEDURE' (PROCEDURE HEADING) "1" 3 (IDENTIFIER) "1" ? X
(STATEMENT) "1"

==>
(PROCEDURE DECLARATION)
3 'PROC^ (PROCEDURE HEADING) "1"

•BEGINS •DEC^ (SERIAL NUMBER) "1" •RESULT^;
(STATEMENT) "1"

•END*
%
a

•COMMENT^ 2.A.I. DENOTATION OF ARRAYS CALLED BY VALUE;

•SO^
•PROC^ (IDENTIFIER) (FORMAL PARAMETER PART) "11" ;
•VALUED (IDENTIFIER LIST) "11"
a 7 (IDENTIFIER) "11" a (IDENTIFIER TOKEN) X 7 X ;
(SPECIFICATION PART) "11"
3 ? (SPECIFIER) " U " a 7 •ARRAY^ % (IDENTIFIER LIST)

3 ? (IDENTIFIER) "11" 7 % 7
X (BLOCK HEAD) "11" ; (COMPOUND TAIL) "11"

==)
•PROC (IDENTIFIER) "I" (FORMAL PARAMETER PART) "11";
•VALUED (IDENTIFIER LIST) "11"
3 ? (IDENTIFIER) 3 (SERIAL NUMBER) "11" (SPECIFIER) "11" % 7 % ;
(SPECIFICATION PART) "11"
(BLOCK HEAD) "11" ; •DEC^ (SERIAL NUMBER) "11" (SPECIFIER) "11"

a •SD^ •ARRAYS ==) •REAL' 'ARRAY' 'SC % %
ALLOCATE I (SERIAL NUMBER) "11" (SPECIFIER) "11"
3 'SD' 'ARRAY' ==) 'REAL' 'ARRAY* •SC* i ,

(IDENTIFIER) "11") ;
(COMPOUND TAIL) "11"

3

*COMMENT' 2.A.l.A.l. DENOTE OCCURRENCES OF THE VALUE ARRAY;

'SD'
(COMPOUND TAIL) "111" 3 7 (IDENTIFIER) "11" ? X

= =)
(COMPOUND TAIL) "111"
3 7 (IDENTIFIER) 3 (SERIAL NUMBER) "11" (SPECIFIER) "11"

3 'SD' 'ARRAY' ==) 'REAL' 'ARRAY' 'SC % % 7
%

'SC
X

'SC

142 (3.1.2)

•COMMENT^ 2.A.2. DENOTATION OF FORMAL PARAMETERS CALLED BY VALUE;

'^"'•PROC^ (IDENTIFIER) (FORMAL PARAMETER PART) "ll" ;
•VALUED (IDENTIFIER LIST) "11"
S 7 (IDENTIFIER) "11" 3 (IDENTIFIER TOKEN) % ? « ;
(SPECIFICATION PART) "11"
a 7 (SPECIFIER) "11" (IDENTIFIER LIST)

a 7 (IDENTIFIER) " U " 7 % 7
% (BLOCK HEAD) "11" ; (COMPOUND TAIL) "11"

'PROC (IDENTIFIER) "1" (FORMAL PARAMETER PART) "11";
'VALUE' (IDENTIFIER LIST) "11" . „ .
a 7 (IDENTIFIER) 3 (SERIAL NUMBER) "11" (SPECIFIER) "11" X 7 X i
(SPECIFICATION PART) "11"
(BLOCK HEAD) "U" ; •DEC (SERIAL NUMBER) "11" (SPECIFIER) "11";

(SERIAL NUMBER) "11" (SPECIFIER) "11" := (IDENTIFIER) "11" ;
(COMPOUND TAIL) "11"

a
•COMMENT^ 2 . A . 2 . A . I . DENOTE OCCURRENCES OF THE VALUE PARAMETER;

•SD'
(COMPOUND TAIL) "111" 3 ? (IDENTIFIER) "11" 7 X

= =)
(COMPOUND TAIL) " 1 1 1 "
3 7 (I D E N T I F I E R) 3 (SERIAL NUMBER) " l l " (S P E C I F I E R) " l l " % 7 X

•SC
X

•SC^
X
a

•COMMENT" 2 . B . I . DENOTATION OF FORMAL PARAMETERS;

•SD^
•PROC^ (PROCEDURE HEADING) "21"
a (IDENTIFIER) ((FORMAL PARAMETER LIST)

a (FORMAL PARAMETER) 3 (IDENTIFIER) "21" X
(PARAMETER DELIMITER) (FORMAL PARAMETER) "21"

X 7

X (BLOCK HEAD) "21" ; (COMPOUND TAIL) "21"
==)

'PROC (PROCEDURE HEADING) "21"
a (IDENTIFIER) "I" t (FORMAL PARAMETER LIST)

a (FORMAL PARAMETER) "21" X 7
X (BLOCK HEAD) "21" ; 'DEC (SERIAL NUMBER) "21" 'FORMAL' ;
(COMPOUND TAIL) "21"
a

'COMMENT' 2.B.l.A.l. DENOTE OCCURRENCES OF FORMAL PARAMETER:

(3.1.2) 143

*SD'
(COMPOUND TAIL) "121" 3 ? (IDENTIFIER) "21" ? X

= =)
(COMPOUND TAIL) "121"
3 7 (IDENTIFIER) 3 (SERIAL NUMBER) "21" 'FORMAL' % 7 X

'SC
X

'SC

'COMMENT' 2.B.2. DENOTATION OF FORMAL PARAMETERS;

'SD'
•PROC (PROCEDURE HEADING)
3 (IDENTIFIER) { (FORMAL PARAMETER) 3 (IDENTIFIER) "21" %) 7 %
(BLOCK HEAD) "21" ; (COMPOUND TAIL) "21"

= = >
•PROC^ (IDENTIFIER) "1" ;
(BLOCK HEAD) "21" ; •DEC^ (SERIAL NUMBER) "21" 'FORMAL' ;
(COMPOUND TAIL) "21"
S

'COMMENT' 2.B.2.A.I. DENOTE OCCURRENCES OF FORMAL PARAMETER;

•SO'
(COMPOUND TAIL) "121" 3 7 (IDENTIFIER) "21" 7 %

==)
(COMPOUND TAIL) "121"
3 ? (IDENTIFIER) 3 (SERIAL NUMBER) "21" •FORMAL^ X 7 %

•SC^
X

•SC
X

•SC^ •
X

144 (3.1.2)

•COMMENT' BLOCKTRS VERSIONIO. VERSNI0N7 TRANSFORMATIONS REWRITTEN
TO PRESERVE ORDER OF IDENTIFIERS. FOR USE WITH BLKHDTRS,
ARSEGTRS, ARLSTTRS, PRDECTRS, AND FORSTTRS;

(BLOCK)

a

•COMMENT^ 1. DENOTATION OF SIMPLE VARIABLES;

•SD^
(BLOCK HEAD) "1"
a 7 (DECLARATION)

a (TYPE) "1" (IDENTIFIER) "I" 3 (IDENTIFIER TOKEN) X X 7
X ; (COMPOUND TAIL) "I"

= =)
(BLOCK)
a (BLOCK HEAD) "1"

a 7 (DECLARATION) 3 •DEC^ (SERIAL NUMBER) "I" (TYPE) "1" X 7 X i
(COMPOUND TAIL) "1"

X

a

•COMMENT^ l.A.l;

'SO'
(BLOCK) "11" a ? (IDENTIFIER) "1" 7 X

= =)
(BLOCK) "11"
a 7 (IDENTIFIER) 3 (SERIAL NUMBER) "1" (TYPE) "I" X 7 X

X
•SC

•COMMENT' 2. DENOTATION OF ARRAYS;

•SD^
(BLOCK HEAD) "1"
3 7 (DECLARATION)

3 (TYPE) "1" 'ARRAYS (IDENTIFIER) "1"
•«/!• 1 : ALLOCATE ((ACTUAL PARAMETER LIST) "I"
3 (IDENTIFIER) 7 X i /)

X 7
X ;

(COMPOUND TAIL) "1"
= =)

(BLOCK)
a (BLOCK HEAD) "1"

a ? (DECLARATION)

• A.l'nrAT/?^^!?^ NUMBER) "1" (TYPE) "1" •ARRAY^ X 7
.ALLOCATE I (ACTUAL PARAMETER LIST) "I"
(IDENTIFIER) 3 (SERIAL NUMBER) "I" (TYPE) "1" •ARRAV X 7 X) •

(3 .1 .2) 145

(COMPOUND T A I L) " I "
X
3

•COMMENT^ 2 . A . 1 ;

•SD^
(BLOCK) "11" a 7 (IDENTIFIER) "1" 7 X

==>
(BLOCK) "ll"
3 7 (IDENTIFIER) 3 (SERIAL NUMBER) "I" (TYPE) "1" •ARRAY^ X 7 X

•SC
X

•SĈ

•COMMENT^ 3. DENOTATION OF LABELS, INCLUDING THOSE IN SWITCHES;

•SD̂
(BLOCK HEAD) "1" ; (COMPOUND TAIL) "I"
3 7 (LABEL) 3 (IDENTIFIER) "1" 3 (IDENTIFIER TOKEN) X X : 7 %

= = >
(BLOCK)
3 (BLOCK HEAD) "I" ; •DEC^ (SERIAL NUMBER) "I" •LABEL' ;

(COMPOUND TAIL) "I"
X
3

'COMMENT' 3.A.I;

'SD'
(BLOCK) "11" 3 ? (IDENTIFIER) "1" ? X

==)
(BLOCK) "11"
3 7 (IDENTIFIER) 3 (SERIAL NUMBER) "1" 'LABEL' X 7 X

'SC
%

'SC

'COMMENT' 4. DENOTATION OF (TYPE) PROCEDURE IDENTIFIERS AND
AND CREATION OF (SKIP STATEMENT)S;

'SD'
(BLOCK HEAD) "1"
a ? (DECLARATION)

a (TYPE) "1" 'PROC (IDENTIFIER) "1" ; (BLOCK) "1" X 7
X ; (COMPOUND TAIL) "1"

==>
(BLOCK)
a (BLOCK HEAD) "1"

3 ? (DECLARATION)
a •DEC^ (SERIAL NUMBER) "1" (TYPE) "I" •PROCEDURE* % ?

X ;

146 (3.1.2)

•SKIP^ (SERIAL NUMBER) "1" (TYPE) "1" •PROCEDURE^ (BLOCK) "1" ;
(COMPOUND TAIL) "1"

X
a

•COMMENT^ 4.A.1;

•SD^
(BLOCK) "11" a 7 (IDENTIFIER) "1" ? %

==)
(BLOCK) "11"
3 7 (I D E N T I F I E R)

3 (SERIAL NUMBER) " 1 " (T Y P E) " 1 " 'PROCEDURE' X 7
X

• S C
X

•sc

•COMMENT" 5. DENOTATION OF NON-(TYPE) PROCEDURE IDENTIFIERS AND
AND CREATION OF (SKIP STATEMENT)S;

•SD^
(BLOCK HEAD) "I"
3 7 (DECLARATION) 3 •PROC^ (IDENTIFIER) "I" ; (BLOCK) "I" % 7 X
; (COMPOUND TAIL) "1"

= =)
(BLOCK)
3 (BLOCK HEAD) "1"

a ? (DECLARATION)
3 •OEC^ (SERIAL NUMBER) "1" 'PROCEDURE' X 7

X ; 'SKIP' (SERIAL NUMBER) "1" 'PROCEDURE' (BLOCK) "1" ;
(COMPOUND TAIL) "1"

X
3

'COMMENT' 5.A.I;

'SD'
(BLOCK) "11" a 7 (IDENTIFIER) "1" 7 X

==)
(BLOCK) "11"

a 7 (I D E N T I F I E R) 3 (SERIAL NUMBER) " 1 " 'PROCEDURE' X 7 X

X
' S C

'COMMENT' 6. DENOTATION OF SWITCH IDENTIFIERS;

' SD'
(BLOCK HEAD) "1"
3 7 (DECLARATION)

a 'SWITCH^ (IDENTIFIER) "1" 3 (IDENTIFIER TOKEN) X

(3.1.2) 147

:= (SWITCH LIST) "1"
X ?

X ; (COMPOUND TAIL) "1"
= =)

(BLOCK)
3 (BLOCK HEAD) "1"

a ? (DECLARATION) 3 'DEC^ (SERIAL NUMBER) "1" •SWITCH^ X 7 X ',
•SWITCH^ (SERIAL NUMBER) "1" •SWITCH^ := (SWITCH LIST) "I" ;
ALLOCATE ((SERIAL NUMBER) "1" •SWITCH') ; (COMPOUND TAIL) "1"

t
a

•COMMENT^ 6.A.I. MOVE THE (SWITCH LIST) TO THE ALLOCATE PROCEDURE;

•SO'
(BLOCK HEAD) "11" ;
'SWITCH' (IDENTIFIER) "11" := (SWITCH LIST) "11"
3 (SWITCH LIST) 3 (EXPRESSION) "11" , (EXPRESSION) "12" X 7 X ;
ALLOCATE ((ACTUAL PARAMETER LIST) "11") ;
(COMPOUND TAIL)

= = >
(BLOCK HEAD) "11" ;
'SWITCH' (IDENTIFIER) "11" := (SWITCH LIST) "11"
3 (SWITCH LIST) 3 (EXPRESSION) "12" « 7 % ;
ALLOCATE ((ACTUAL PARAMETER LIST) "11" , (EXPRESSION) " U ") ;
(COMPOUND TAIL) "I"

•SC*

COMMENT 6.A.2. MOVE THE LAST ELEMENT OF THE (SWITCH LIST) AND
DELETE THE OLD (SWITCH DECLARATION);

•SD*
(BLOCK HEAD) "II" ; 'SWITCH* (IDENTIFIER) := (EXPRESSION) "11" ;
ALLOCATE ((ACTUAL PARAMETER LIST) "11") ; (COMPOUND TAIL)

==)
(BLOCK HEAD) "11" ;
ALLOCATE ((ACTUAL PARAMETER LIST) "11" , (EXPRESSION) "11") ;
(COMPOUND TAIL) "1"

*SC'
X
a

'COMMENT' 6.B.1;

•SO*
(BLOCK) "I" 3 7 (IDENTIFIER) "I" 7 X

==)
(BLOCK) "1"
a ? (IDENTIFIER) 3 (SERIAL NUMBER) "I" 'SWITCH' X 7 X

'SC
X

•SC
%

148 (3.1.2)

'COMMENT' FORSTTRS VERSIONl. TRANSFORMATION TO MAKE LABELS IN THE
CONTROLLED STATEMENT OF A FOR STATEMENT LOCAL;

(FOR STATEMENT)
3

'COMMENT' 1. DENOTE THE FIRST LABEL LOCAL TO THE CONTROLLED STATEMENT.
(ANY OTHERS WILL BE DENOTED BY THE (BLOCK) TRANSFORMATIONS.);

•SD"
(FOR CLAUSE) "I" (STATEMENT) "1"
3 7 (LABEL) 3 (IDENTIFIER) "1" 3 (IDENTIFIER TOKEN) X X : 7 X

==)
(FOR CLAUSE) "1"
•BEGIN' 'DEC (SERIAL NUMBER) "I" 'LABEL' ;

(STATEMENT) "1"
3

•COMMENT' l . A . l . DENOTE OCCURRENCES OF THE LABEL;

•SD"
(STATEMENT) "11" 3 ? (IDENTIFIER) "1" ? X

==>
(STATEMENT) "11"
3 ? (IDENTIFIER) 3 (SERIAL NUMBER) "I" 'LABEL' X 7 X

"SC
X
•END'

'SC
X

(3.2) 149

3.2 Transformations for For Statement Optimization

The for statement optimization problem in Algol 60 is broadly

concerned with detecting and removing from the controlled statement

of a for statement those calculations which can be guaranteed to be

invariant or linear with respect to the loop, in the hope of reducing

the overall execution time of the for statement. Since it is difficult

to define in general what is the (execution-time) optimal form of

a for statement , much less to achieve it, the for statement optimiza

tion problem might more properly be called the "for statement improve

ment problem." Custom sanctions the former name, however. When

optimization is restricted to subscript expressions, as is largely

the case here, it is often called "recursive address calculation."

A number of papers discussing the general problem of program

optimization have appeared in the literature since the publication

of the classic paper of Samelson and Bauer [35] which introduces

the concept of recursive address calculation. These include the

discussions of for statement optimization in Hawkins and Huxtable

[17], and in the work of the ALCOR group, Grau, Hill, and Langmaack

[15], Bayer, et al [5], and Cries, et al [16]. Optimization of

Fortran programs is discussed in three recent papers, those of Lowry

and Medlock [22], Allen [1], and Busam and Englund [8]. Perforce

the treatment of for statement optimization here is more closely

For example, removal of invariant calculations may increase the
execution time of a for statement if the numerical value of the until-
expression is such that the controlled statement is executed zero
times.

150 (3.2)

related to the concepts of the former group, especially [15] and [5],

than to those of the latter.

The more recent papers above ([1] and [22], but also [17] to

some extent) are concerned with performing extensive flow analysis

on large segments of a program and attempting to optimize all suitable

segments, not simply those associated with the particular syntactic

notation provided for loops (e.g., the DO statement in Fortran).

The descriptions of these processes tend to be quite complex and

dependent on specific language constructions and array addressing

schemes. The goal of the transformational description of for statement

optimization presented here is rather different: It is to show that

transformations can provide a reasonable and notationally convenient

grammatical description of the (partially optimized) meaning of

the syntactic construction for statement.

In the transformations presented here, attention is restricted

to implementing recursive address calculation in for statements having

a single step-until-element. (However, invariant step-and-until-

expressions are also removed from the loop.) The reasons for this

restriction are similar to those given in [15], namely that removal

of other invariant or linear calculations is an editorial function

that could as well be performed by the programmer. Hawkins and

Huxtable [17] discuss the possibility of bringing other similar <for

clause's, e.g. :

for i := i+m while B do

(3.2) 151

under the optimization of step-until clauses; transformations could

obviously be written to take care of such specific cases.

The details of the optimization process are discussed in the

following subsection, while the for statement optimization trans

formation list itself is discussed in section 3.2.2.

152 (3.2.1)

3.2.1 Theory of For Statement Optimization

The optimization of a for statement may be divided into three sub-

tasks: determination that the for statement is suitable for optimization

(i.e., that invariant or linear calculations potentially can exist);

determination that the subscripts of a particular subscripted variable

in the controlled statement are linear or constant; and modification of

the for statement to introduce recursive address calculation for such

variables.

For purposes of the present discussion, a for statement is considered

suitable for optimization if:

(1) The <for clause' consists of a single <for list element' of

the step-until type.

(2) The loop variable is an integer simple variable (or integer

formal parameter called by value).

(3) The loop variable is not assigned in the controlled statement.

(4) The step-expression does not contain the loop variable, nor

the identifier of any variable assigned in the controlled

statement.

(5) The for statement contains no procedure or function calls

beyond the delimiter step, (except for calls to standard functions,

known not to cause side effects).

(6) The for statement contains no instances of a formal parameter

called by name (except as an array identifier) beyond the

delimiter step. ,

These conditions guarantee that the step-expression is constant with

(3.2.1) 153

respect to the loop, that adding it to the loop variable always

produces the same increment in the loop variable, and that no side-

effects can occur to cause hidden violations of this guarantee.

(In addition to the above checks, the until-expression can be examined,

and, if it does not contain the loop variable or a variable assigned

in the controlled statement, it may be calculated before entering

the loop.)

Subscripted variables occurring in the controlled statement

of a for statement are classified as constant, linear, or general

with respect to the loop according to the following criteria:

(1) A variable containing a variable assigned in the controlled

statement is general.

(2) A variable declared in a block contained in the controlled

statement is general.

(3) A variable containing a subscripted variable is general.

(4) Of the remaining variables, a variable not containing the loop

variable is constant.

(5) Of the now remaining variables, a variable is linear provided

each of its <subscript expression's which contains the loop

variable meets the following conditions:

(a) It contains only one instance of the loop variable.

(b) It does not contain: a real variable; a constant having

an <exponent part' with negative exponent, or a <decimal

fraction'; the operators /, // (integer division), or

154 (3.2.1)

'POWER'; a <conditional expression'; or a <procedure

designator'.

(6) Any remaining variables are general.

Some of these criteria may be regarded as overly restrictive (for

example, a[i+i] and a[i + cos(O)] are classed as general even though

they actually are linear). In each of these cases what is essen

tially an engineering judgement has been made: that the frequency

of occurrence of the particular case does not justify the increased

complexity produced by refining the applicable criterion.

Recursive address calculation can be applied to the subscripted

variables marked linear or constant according to the above criteria.

To implement it, reference primaries and address Variables are intro

duced, thereby avoiding explicit use of the addressing polynomial

of an array. (This is similar to "Method I" of section 5.3.1 of

[15].) The reasons for doing this are twofold: First, it keeps

the transformational description of for statement optimization inde

pendent of the particular addressing scheme used for arrays (so

long as that addressing scheme remains a linear function of the array

subscripts). Second, it is appropriate for use with transformations

because their lack of arithmetic capability makes it difficult to

use them to reference the subscript range information contained in

the "information vector" used with the addressing polynomial.

Reference primaries are defined by the production:

<primary : := ref <variable'

(3.2.1) 155

Their value is the address of <variable'. Address variables are

defined by:

<variable' ::= val <simple variable'

They denote that a value is to be fetched from or stored into the

address which is the value of <simple variable'. Using reference

primaries and address variables, the base address and increment

for a subscripted variable a[i] appearing in a statement con

trolled by the <for clause':

for i := x step y until z d£

are calculated as follows:

1 := x;

base := ref a[i];

i := x+y;

increment := ref a[i]-base;

Occurrences of a[i] in the controlled statement are replaced by

the address variable val base, and the statement:

base := base + increment

is placed at the end of the loop along with the statement incrementing

i. (Appropriate declarations for the integer variables base and

increment must also be introduced.) Subscripted variables constant

with respect to the loop are treated similarly, but the variable

increment and the calculations in which it appears are omitted.

156 (3.2.1)

The above method of recursive address calculation unfortunately

becomes rather complicated when applied to nested for statements,

because it is not possible to separate the dependence of the reference

primaries on the various loop variables as can be done for the method

of addressing polynomials. This problem is discussed at some length

in section 5.4 of [15].

(3.2.2) 157

3.2.2 The For Statement Optimization Transformation Set

At the end of this section is listed the for statement optimiza

tion transformation set. It consists of but a single <statement'-

transformation list which performs both the detection and optimization

of suitable for statements and the expansion of the remainder in

analogy with section 4.6 of the Revised Report. Extensive use is

made of the ability of subtransformation sequences to localize the

application of certain transformations, thereby avoiding pointless

application to unsuitable statements.

The first transformation and the l.A subtransformation list

check the criteria for suitability given in section 3.2.1. Statements

found to be unsuitable are marked with the marker fori, and are trans

formed later by transformations 2, 3, or 4. The I.B subtransformation

list then expands the <for clause' in a manner compatible with the

l.C subtransformation list and the later Introduction of recursive

address calculations. As a result of this expansion the until-

expression is calculated before entering the loop. The l.C subtrans

formation list examines the until-expression, and if it contains

the loop variable or a variable assigned in the controlled statement

it moves the calculation back into its proper place in the loop.

In addition the l.C subtransformation list moves and replicates the

controlled statement to facilitate checking whether a subscripted

variable contains a variable assigned in the loop. This check and

the check for subscripted variables declared in blocks contained

158
(3.2.2)

in the controlled statement are performed by the l.D subtransformation

list. The l.E subtransformation list then performs the remainder of

the check to determine if a subscripted variable is constant, linear,

or general with respect to the loop (cf. section 3.2.1).

The l.F and l.G subtransformation lists perform the actual

introduction of recursive address calculation. The former optimizes

subscripted variables marked linear, while the latter optimizes

those marked constant. The notation, "use of <primary' is an arti

fact," in the comments preceding subtransformations l.F.l.A.2 and

l.G.l.A.2 concerns an error in the grammar of section 6.1; address

variables were introduced via the production:

<primary' ::= val <variable'

Instead of:

<variable' ::= val <simple variable'

(Also, addr would probably be preferable to val) . If the grammar were

corrected, subtransformations l.F.l.A.l and l.F.l.A.2 could be combined

(as could l.G.l.A.l and l.G.l.A.2). Subtransformations l.F.l.A.3

and l.G.l.A.3 apply when the variable to which recursive address

calculation is being applied has already been optimized in an inner

loop.

Unfortunately, the computation of the tables required by the parsing
algorithm from the grammar of section 6.1 required 3300 seconds on
the IBM 360/75; therefore it was deemed impracticable to modify the
grammar.

(3.2.2) 159

Transformations 2-8 of the <statement'-transformation list

expand unsuitable for statements in a manner analogous to their

definitions in section 4.6 of the Revised Report (see also the

example at the end of section 1.1.2). The indexed symbol for "1

in these transformations matches either for or fori. Transforma

I t , tl

tion 9 removes labels from a for statement and places them on a

compound statement containing the for statement, so that transforma

tions 1-8 can apply.

One should note that the for statement optimization transformation

set presupposes the application of the identifier denotation transfor

mation set described in section 3.1. This is necessary, for example,

to permit the check that the loop variable of a suitable for statement

is an integer simple variable, and to permit the check that a subscript

containing the loop variable does not contain any real variables.

It should also be noted that this for statement optimization trans

formation set does not do an especially good job of optimizing nested

for statements, since it does not attempt to move the recursive address

calculation of a subscripted variable further out in the nest than

the innermost loop at which the variable is linear. This problem

requires further study to develop appropriate transformations.

The for statement optimization transformation set is listed below;

examples of the application of the transformation set sequence con

sisting of the identifier denotation transformation set and the for

statement optimization transformation set are given in section 6.3.

160 (3.2.2)

'COMMENT' F0R0PTV7. TRANSFORMATIONS TO CONVERT FOR STATEMENTS
INTO STATEMENTS, OPTIMIZING THOSE WHICH ARE SUITABLE;

(STATEMENT)
a

'COMMENT' 1 . ANALYZE SIMPLE FOR-STEP-UNTIL STATEMENTS FOR
O P T I M I Z A B I L I T Y ;

'SD'
'FOR" (VARIABLE) "1" 3 (SERIAL NUMBER) "1" 'INTEGER' X '.=
(EXPRESSION) "1" 'STEP* (EXPRESSION) "2" 'UNTIL*
(EXPRESSION) "3" *DD* (STATEMENT) "X"

= =)
(STATEMENT)
3 'FOR' (VARIABLE) " 1 " : = (EXPRESSION) " 1 " "STEP*

(EXPRESSION) " 2 " * U N T I L ' (EXPRESSION) " 3 " ' D O '
(STATEMENT) " 1 "

a

'COMMENT' l.A.l. REMOVE UNARY PLUS FROM STEP EXPRESSION;

*SD'
'FOR' (VARIABLE) := (EXPRESSION) 'STEP' • (TERM) "1"

'UNTIL' (EXPRESSION) '00'
(STATEMENT)

==)
'FOR' (VARIABLE) "1" := (EXPRESSION) "1" 'STEP' (TERM) "1"

•UNTIL^ (EXPRESSION) "3" •DO'
(STATEMENT) "1"

'SC

'COMMENT' l.A.2. REMOVE FROM CONSIDERATION ANY STATEMENT IN
WHICH SIDE EFFECTS COULD ARISE VIA PROCEDURE OR <TYPE)-
PROCEDURE CALLS;

•SD̂
(FOR STATEMENT) "11"
a •FOR' (VARIABLE) := (EXPRESSION) ? (IDENTIFIER) "11"

3 (SERIAL NUMBER) ? •PROCEDURE^ X ?

==)
(FOR STATEMENT) "11"

^ •T(,n.MT?c}L' <VARIABLE) «1- := (EXPRESSION) "1"
7 <IOENTIFIER> "11" ?

X

•COMMENT^ I . A . 3 . SIMILARLY FOR FORMAL PARAMETERS WHICH ARE

X
•SC^

(3.2.2) 161

USED AS SIMPLE VARIABLES;

'SD^

= =)

(FOR STATEMENT) "11"
a •FOR^ (VARIABLE) := (EXPRESSION) ? (SIMPLE VARIABLE) "11"

.J (SERIAL NUMBER) •PORMAL^ T ?

(FOR STATEMENT) "11"
a •FOR^ a 'FORI* t (VARIABLE) "I" := (EXPRESSION) "1"

? (SIMPLE VARIABLE) "11" ?
X

•SC'

•COMMENT^ I.A.4. SIMILARLY FOR FORMAL PARAMETERS WHICH ARE
USED AS PROCEDURE IDENTIFIERS (CALLED (IDENTIFIER 1) BY
SYNTAX):

'SO^
(FOR STATEMENT) "11"
3 'FOR^ (VARIABLE) := (EXPRESSION) 7 (IDENTIFIER 1) "11"

a (SERIAL NUMBER) •FORMAL^ X 7
X

= =)
(FOR STATEMENT) "11"
a •FOP' a 'FORI' X (VARIABLE) "I" := (EXPRESSION) "1"

? (IDENTIFIER 1) "11" 7
X

•SC

'COMMENT* l.A.5. SIMILARLY FOR A STATEMENT IN WHICH THE LOOP
VARIABLE IS ASSIGNED TO;

S0

= =)

•FOR^ (VARIABLE) := (FOR LIST) "11" •DO^ (STATEMENT)
a ? (VARIABLE) "1" := ? X

•EOPl^ (VARIABLE) "I" := (FOR LIST) "11" •DO*
(STATEMENT) "1"

•SC

•COMMENT* l.A.6. REMOVE FROM CONSIDERATION STATEMENTS IN
WHICH THE STEP EXPRESSION CONTAINS THE LOOP VARIABLE;

•SO^

« = >

•FOR^ (V A R I A B L E) := (E X P R E S S I O N) •STEP'
(E X P R E S S I O N) 3 7 (V A R I A B L E) " 1 " ? X
'UNTIL' (EXPRESSION) 'DO' (STATEMENT)

'FORI' (VARIABLE) "1" := (EXPRESSION) "1" 'STEP'
(EXPRESSION) "2" 'UNTIL' (EXPRESSION) "3" 'DO'
(STATEMENT) "1"

162 (3.2.2)

•SC^

•COMMENT^ l.A.7. REMOVE FROM CONSIDERATION STATEMENTS IN
WHICH THE STEP EXPRESSION CONTAINS A VARIABLE ASSIGNED
INSIDE THE LOOP;

•SD^
•FOR^ (VARIABLE) := (EXPRESSION) •STEP^
(EXPRESSION) 3 7 (IDENTIFIER) "11" 7 X
•UNTIL^ (EXPRESSION) •DO^
(STATEMENT) 3 7 (VARIABLE) 3 (IDENTIFIER) "11" 7 ? := 7 «

= =)
•FORI' (VARIABLE) "1" := (EXPRESSION) "I" •STEP^
(EXPRESSION) "2" •UNTIL^ (EXPRESSION) "3" •DO^
(STATEMENT) "I"

•SC^
X

a
•COMMENT^ l . B . l . EXPAND STEP-UNTIL CLAUSES I N ANALOGY WITH

SECTION 4 . 6 . 4 . 2 OF THE REVISED REPORT, LEAVING PLACES
TO INSERT ADDITIONAL STATEMENTS GENERATED IN THE COURSE
OF OPTIMIZATION. EXPAND THE CASE OF A POSIT IVE INTEGER
STEP F IRST;

•SD^
'FOR' (VARIABLE) := (EXPRESSION) 'STEP'

(UNSIGNED INTEGER) "11" "UNTIL^ (EXPRESSION) •DO^
(STATEMENT)

= =)
'BEGINl' •DEC^ (SERIAL NUMBER) " U " •LABEL* ;

•DEC^ (SERIAL NUMBER) "12" •INTEGERS ;
•BEGINS (VARIABLE) "1" := (EXPRESSION) "1";

(SERIAL NUMBER) "12" 'INTEGERS ..= (EXPRESSION) "3"
•END^ ;
(STATEMENT) "1" ;
(VARIABLE) "1" ..= (VARIABLE) "I" • (UNSIGNED INTEGER) "11" ;
(VARIABLE) "1" ..= (VARIABLE) "1" - (UNSIGNED INTEGER) "11" ;

(SERIAL NUMBER) "11" •LABEL^ :
•IF' (VARIABLE) "1" (= (SERIAL NUMBER) "12" •INTEGERS •THEN^
•BEGIN' (VARIABLE) "1" ..= (VARIABLE) "I"

+ (UNSIGNED INTEGER) "11" ;
•GO TO^ (SERIAL NUMBER) "11" 'LABEL^

•END^
•END^

•SC

•COMMENT^ I.B.2. EXPAND A NEGATIVE INTEGER STEP;

•SO^

•FOR^ (VARIABLE) := (EXPRESSION) •STEP^
- (UNSIGNED INTEGER) "11" •UNTIL^ (EXPRESSION) 'DO^

(3.2.2) 163

(STATEMENT)
==)

•BEGINl^ •DEC^ (SERIAL NUMBER) "11" •LABEL^ ;
•DEC^ (SERIAL NUMBER) "12" •INTEGER* ;
•BEGIN' (VARIABLE) "1" := (EXPRESSION) "1" ;

(SERIAL NUMBER) "12" •INTEGERS ..= (EXPRESSION) "3"
•END' :
(STATEMENT) "1" ;
(VARIABLE) "I" ..= (VARIABLE) "1" - (UNSIGNED INTEGER) "ll" J
(VARIABLE) "1" ..= (VARIABLE) "1" • (UNSIGNED INTEGER) "11" !

(SERIAL NUMBER) "ll" 'LABEL' :
'IF' (VARIABLE) "1")= (SERIAL NUMBER) "12" 'INTEGER' 'THEN*
•BEGIN' (VARIABLE) "1" ..= (VARIABLE) "1"

- (UNSIGNED INTEGER) "II" ;
•GO TO' (SERIAL NUMBER) "11" 'LABEL'

'END'
•END^

'SC

'COMMENT' I.B.3. EXPAND THE GENERAL STEP ELEMENT;

' S D '
'FOR' (VARIABLE) := (EXPRESSION) ' S T E P '

(EXPRESSION) 'UNTIL' (EXPRESSION) 'DO'
(STATEMENT)

==)
'BEGINl' 'DEC (SERIAL NUMBER) "11" 'LABEL' ;

'DEC (SERIAL NUMBER) "12" 'INTEGER' ;
'DEC (SERIAL NUMBER) "13" 'INTEGER* ;
•BEGINS (VARIABLE) "I" := (EXPRESSION) "I";

(SERIAL NUMBER) "12" •INTEGERS ..= (EXPRESSION) "2";
(SERIAL NUMBER) "13" •INTEGERS ..= (EXPRESSION) "3"

'END^ ;
(STATEMENT) "1" ;
(VARIABLE) "1" ..= (VARIABLE) "1" •

(SERIAL NUMBER) "12" •INTEGERS ;
(VARIABLE) "I" ..= (VARIABLE) "1" -

(SERIAL NUMBER) "12" •INTEGERS ;
(SERIAL NUMBER) "11" 'LABEL^ :

•IF' ((VARIABLE) "1" - (SERIAL NUMBER) "13" 'INTEGER')
* SIGN ((SERIAL NUMBER) "12" 'INTEGER') (= 0

'THEN'
'BEGIN' (VARIABLE) "1" ..= (VARIABLE) "1"

• (SERIAL NUMBER) "12" 'INTEGER' ;
'GO TO' (SERIAL NUMBER) "11" 'LABEL'

'END*
'END'

•SC
X
3

•COMMENT^ l.C.l. IF UNTIL EXPRESSION CONTAINS LOOP VARIABLE

164 (3.2.2)

AND SHOULD NOT BE CALCULATED IN ADVANCE, REMOVE SAID
CALCULATION;

I SD^

(BLOCK HEAD) "11" ; 'DEC (SERIAL NUMBER) "11" * INTEGER* ;
'BEGIN' (COMPOUND TAIL) "11"
3 7 (COMPOUND TAIL)

a (STATEMENT) "ll" ; (SERIAL NUMBER) "11" 'INTEGER'
..= (EXPRESSION) 3 ? (VARIABLE) "1" ? X 'END'

X
X ; (STATEMENT) ;
(STATEMENT) "12" ;
(STATEMENT) "13" ;

(LABEL) "11" :
•IF' (EXPRESSION) "11"
3 7 (PRIMARY) 3 (SERIAL NUMBER) "ll" •INTEGER* X 7 X •THEN'
'BEGIN' (COMPOUND TAIL) "12"

'END'
==)

(BLOCK HEAD) "11" ;
'BEGIN' (COMPOUND TAIL) "11"
a ? (COMPOUND TAIL) 3 (STATEMENT) "11" •ENO^ X X i
•BEGIN' 'END' ; (STATEMENT) "12" ;
'BEGIN' 'END' ; (STATEMENT) "13" ;

(LABEL) "11" :
'IF' (EXPRESSION) "11"
3 7 (PRIMARY) 3 ((EXPRESSION) "3") « ? X 'THEN'
•BEGINS

•BEGINS (STATEMENT) " I " ; (STATEMENT) " I " •END* ;
(COMPOUND T A I L) " 1 2 "

"END"
•SC^

•COMMENT^ l . C . 2 . IF UNTIL EXPRESSION CONTAINS A VARIABLE
ASSIGNED IN THE LOOP AND SHOULD NOT BE CALCULATED I N
ADVANCE, REMOVE SAID CALCULATION;

•SD^
(BLOCK HEAD) "11" ; •DEC (SERIAL NUMBER) "11" 'INTEGER' ;

'BEGIN' (COMPOUND TAIL) "11"
a 7 (COMPOUND TAIL)

a (STATEMENT) "11" ; (SERIAL NUMBER) "11" 'INTEGER'
..= (EXPRESSION)
a ? (VARIABLE) a (IDENTIFIER) "ll" 7 % 7 S 'END'

X
X : (STATEMENT)
3 7 (VARIABLE) a (IDENTIFIER) "11" 7 % := ? t ;
(STATEMENT) "12" ;
(STATEMENT) "13" ;

(LABEL) "11" :
•IF' (EXPRESSION) "11"
a 7 (PRIMARY) a (SERIAL NUMBER) "11" 'INTEGER' X 7 X 'THEN'

(3.2.2) 165

•BEGIN' <COMPOUN0 TAIL) "12"
'END'

»=>
<BLOCK HEAD) "11" ;

•BEGIN' (COMPOUND TAIL) "11"
a 7 (COMPOUND TAIL) 3 (STATEMENT) "11" 'END* % X i
•BEGIN" 'END' ; (STATEMENT) "12" ;
•BEGINS •ENO^ ; (STATEMENT) "13" ;

(LABEL) "11" :
• IF« (EXPRESSION) "ll"
a 7 (PRIMARY) a ((EXPRESSION) "3" t X 7 X 'THEN'
'BEGIN'

•BEGINS (STATEMENT) "1" ; (STATEMENT) "1" 'END* ;
(COMPOUND TAIL) "12"

•END*
•SC

•COMMENT* l.C.3. IF UNTIL EXPRESSION COULD BE CALCULATED IN
ADVANCE. MOVE AND REPLICATE THE CONTROLLED STATEMENT AND
INSERT DUMMY COMPOUND STATEMENTS AS REQUIRED;

•SO^
(BLOCK HEAD) "11" ; (COMPOUND STATEMENT) "11" ;

(STATEMENT) ; (STATEMENT) "I I" ; (STATEMENT) "12" ;
(LABEL) "11" :

(IF CLAUSE) "11" *BEGIN* (COMPOUND TAIL) "ll"
•END*

==)
(BLOCK HEAD) "11" : (COMPOUND STATEMENT) "11" ;

BEGIN *ENO« ; (STATEMENT) "11" ;
•BEGIN* *END* ; (STATEMENT) "12" ;

(LABEL) "11" :
(IF CLAUSE) "11" ^
•BEGIN*

BEGIN (STATEMENT) "1" ; (STATEMENT) "I" *ENO* ;
(COMPOUND TAIL) "11"

ENO
•SC*
X

a

•COMMENT* l.D.l. MARK ALL SUBSCRIPTED VARIABLES IN THE
CONTROLLED STATEMENT WHICH CONTAIN THE IDENTIFIERS OF
VARIABLES ASSIGNED TO;

•SD^
(BLOCK HEAD) "11" ; (STATEMENT) "11" ; (STATEMENT) "12" ;

(STATEMENT) "13" ; (STATEMENT) "1*" ; (STATEMENT) "15" ;
(LABEL) "ll** :

(IF CLAUSE) "11"
•BEGINS

•BEGINS (STATEMENT) "16"

166 (3.2.2)

a ? (VARIABLE) "11" 3 (IDENTIFIER) "11" 7 % := 7 ? 5
(STATEMENT) "17"

•ENO^ ;
(COMPOUND TAIL) "11"

•END^

"^^ <rRinrK HEAD) "11" ; (STATEMENT) "11" ; (STATEMENT) "12" ;
(STATEMENT) "13" ; (STATEMENT) "14" ; (STATEMENT) "15" ;

(LABEL) "11" :
(I F CLAUSE) " 1 1 "
•BEGIN"

•BEGINS (STATEMENT) " 1 6 "
3 7 (VARIABLE) " I I " . . = 7 t ;
(STATEMENT) " 1 7 "

a
'COMMENT^ 1 . 0 . l . A . I . MARK THE VARIABLES:

•SD'
(STATEMENT) "111"
a 7 (SUBSCRIPTED VARIABLE)

a (IDENTIFIER) " U I " 1/ (SUBSCRIPT LIST) "111"
a 7 (IDENTIFIER) "11" ? * /)

X 7
X

= = >
(STATEMENT) " H I "
a 7 (SUBSCRIPTED VARIABLE)

3 (IDENTIFIER) "111" •{/].• (SUBSCRIPT LIST) "111" /) X
X

•SC
X

•ENÔ ;
(COMPOUND TAIL) "ll"

•END̂
•SC

'COMMENT' l.D.3. REMOVE THE COPY OF THE CONTROLLED STATEMENT
USED TO CHECK ASSIGNMENT, AND MARK SUBSCRIPTED VARIABLES
DECLARED IN BLOCKS WITHIN THE CONTROLLED STATEMENT;

'SD'
(BLOCK HEAD) "11" ; (STATEMENT) "11" ; (STATEMENT) "12" ;

(STATEMENT) "13" ; (STATEMENT) "14" ; (STATEMENT) "15" ;
(LABEL) "11" :

(IF CLAUSE) "11"
•BEGINS

•BEGIN' (STATEMENT) "16" ; (STATEMENT) "17" 'END' ;
(COMPOUND TAIL) "11"

'END'
==)

(BLOCK HEAD) "II" ; (STATEMENT) "11" ; (STATEMENT) "12" ;

(3.2.2) 167

(STATEMENT) "13" ; (STATEMENT) "14" ; (STATEMENT) "15"
(LABEL) "11" :

(IF CLAUSE) "11"
'BEGIN2' (STATEMENT) "17"

a

'COMMENT' I.O.2.A.I. LOCATE SUBSCRIPTED VARIABLES
DECLARED IN BLOCKS CONTAINED IN THE CONTROLLED
STATEMENT;

'SD'
(STATEMENT) "111"
a ? (BLOCK HEAD) " H I "

a 'BEGIN' ? 'DEC (DENOTATION)
a (SERIAL NUMBER) "111" ? 'ARRAY* X 7

X ; (COMPOUND TAIL) "111"
a ? (SUBSCRIPTED VARIABLE) "111"

a (DENOTATION) "111"
a (SERIAL NUMBER) "111" ? ? (/ ?

X 7
X 7

= =)
(STATEMENT) "111"
a ? (BLOCK HEAD) "111" ; (COMPOUND TAIL) "111"

a ? (SUBSCRIPTED VARIABLE) "111"
a (DENOTATION) "111" '(/l' 7 ? 7

X 7
X

'SC
X i (COMPOUND T A I L) " l l "
• E N D '

' S C «
X
3

•COMMENT' I.E.I. MARK THE REMAINING UNMARKED SUBSCRIPTED
VARIABLES AS GENERAL ('(/I'), LINEAR IN THE LOOP
VARIABLE (*(/2'), OR CONSTANT I *I/3*);

•SO^
(BLOCK HEAD) "11" ; (STATEMENT) "11" ; (STATEMENT) "12" ;

(STATEMENT) "13" ; (STATEMENT) "14" ; (STATEMENT) "15" ;
(LABEL) "11" : (IF CLAUSE) "11"

•BEGIN2' (STATEMENT) "16" ; (COMPOUND TAIL) "11"
END

==)
(BLOCK HEAD) "11" ; (STATEMENT) "11" ; (STATEMENT) "12" ;

(STATEMENT) "13" ; (STATEMENT) "14" : (STATEMENT) "15" ;
(LABEL) "11" : (IF CLAUSE) "11"

•BEGINS (STATEMENT) "16"

a

168 (3 . 2 . 2)

'COMMENT' I . E . l . A . l . CHECK A SUBSCRIPTED VARIABLE BY
CHECKING THE EXPRESSIONS I N I T ;

' SO'
(STATEMENT) "111"
a 7 (SUBSCRIPTED VARIABLE) "111"

a (IDENTIFIER) 1/ 7 (VARIABLE) "1" ? /I « ?
X

==)
(STATEMENT) "111"
3 7 (SUBSCRIPTED VARIABLE) "111"
a
•COMMENT' I.E.I.A.l.A.I. IF THE SUBSCRIPTED VARIABLE

CONTAINS ANOTHER SUBSCRIPTED VARIABLE, MARK IT
GENERAL;

'SD'
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
a 7 (SUBSCRIPTED VARIABLE) 7 % It

==>
(IDENTIFIER) "115" 'I/l' (SUBSCRIPT LIST) "115" /)

•SC
X

a
•COMMENT' I . E . l . A . l . B . l . I F THE EXPRESSION BEING EXAMINED

CONTAINS THE LOOP VARIABLE EXAMINE IT FOR L I N E A R I T Y ;

' S D '
(I D E N T I F I E R) " 1 1 5 " (/ (SUBSCRIPT L I S T) " 1 1 5 "
3 ? (SUBSCRIPT EXPRESSION) " 1 1 5 "

a ' (S * 7 (V A R I A B L E) " 1 " ? 1! 7
X I)

==)
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
a 7 (SUBSCRIPT EXPRESSION) "115"
3

•COMMENT^ I.E.I.A.I.B.l.A.I. LOOK FOR TWO
OCCURRENCES OF THE LOOP VARIABLE;

•SD̂
•(3' (EXPRESSION) "115"
a ? (VARIABLE) "I" ? (VARIABLE) "1" ? % »

==)
•(!• (EXPRESSION) "115")

•SĈ

•COMMENT^ I.E.l.A.I.B.l.A.2. LOOK FOR A REAL VARIABLE;

(3.2.2) 169

•SD»
'13' (EXPRESSION) "115"
a 7 (IDENTIFIER) a 7 'REAL' 7 « 7 1!)

= =)
'd' (EXPRESSION) "115")

•SC^

'COMMENT' I.E.l.A.I.B.l.A.3. LOOK FOR A DECIMAL
FRACTION;

•SD«
•(3' (EXPRESSION) "115" 3 ? (DECIMAL FRACTION) 7 X I

==)
•(H (EXPRESSION) "115")

•SC^

•COMMENT' I.E.l.A.I.B.I.A.4. LOOK FOR A NEGATIVE
EXPONENT;

'SD'
'(3' (EXPRESSION) "115"
a 7 (EXPONENT PART) 3 ' - (UNSIGNED INTEGER) « 7 ? I

==)
'11' (EXPRESSION) "115")

•$€•

•COMMENT' I.E.l.A.I.B.l.A.5. LOOK FOR DIVISION;

'SO'
'13' (EXPRESSION) "115" 3 7 / 7 ?)

==)
•IP (EXPRESSION) "115")

•SC^

•COMMENT^ l.E.l.A.l.B.l.A.6. LOOK FOR INTEGER DIVISION;

•SD^
•(3^ (EXPRESSION) "115" 3 7 // 7 «)

= =)
•IP (EXPRESSION) "115")

•SC^

•COMMENT^ l.E.l.A.l.B.l.A.7. LOOK FOR EXPONENTIATION;

•SO^
•(3» (EXPRESSION) "115" 3 7 •POWERS ? 1!)

= =)
•(P (EXPRESSION) "115")

•SC^

'COMMENT' I.E.l.A.I.B.l.A.8. LOOK FOR A CONDITIONAL
EXPRESSION;

170
(3.2.2)

'^"''13' (EXPRESSION) "115" 3 7 (IF CLAUSE) 7 X)

'(!• (EXPRESSION) "115")

•SC^

'COMMENT' I.E.I.A.I.B.l.A.9. LOOK FOR A PROCEDURE

DESIGNATOR;

'SD'
'(3' (EXPRESSION) "115"
a ? (PROCFDURE DESIGNATOR) 7 X t

==>
'(1' (EXPRESSION) "115")

•SC^
•COMMENT^ I.E.l.A.1.8.l.A.10. IF NONE OF THE ABOVE,

MARK THE EXPRESSION LINEAR;

•SO^
'(3" (EXPRESSION) "115")

==>
'(2' (EXPRESSION) "115")

•SC
X 7
X n

•sc
•COMMENT- I . E . l . A . I . B . 2 . IF THE EXPRESSION BEING

EXAMINED DOES NOT CONTAIN THE LOOP VARIABLE,
MARK IT LINEAR;

•SD'
(I D E N T I F I E R) " 1 1 5 " (/ (SUBSCRIPT L I S T) " 1 1 5 "
a 7 (SUBSCRIPT EXPRESSION) " 1 1 5 " 3 ' (3 ' 7 % 7 % />

==)
(I D E N T I F I E R) " 1 1 5 " (/ (SUBSCRIPT L I S T) " 1 1 5 "
a 7 (SUBSCRIPT EXPRESSION) " 1 1 5 " 3 ' (2 ' 7 X 7 X It

• S C

•COMMENT^ I . E . l . A . I . B . 3 . MARK NEXT EXPRESSION FOR ANALYSIS;

•SD^
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
3 7 (EXPRESSION) 3 •(2' (EXPRESSION) "115" I X ,

(EXPRESSION) "116" 7
X 1)

= =>
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
3 7 (EXPRESSION) "115" , (EXPRESSION)

3 '(3^ (EXPRESSION) "116") X 7

(3.2.2) 171

X n
•sc^

•COMMENT^ I.E.l.A.I.B.4. IF THERE IS NO NEXT EXPRESSION,
THE VARIABLE IS LINEAR;

•SD^
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
a ? (SUBSCRIPT EXPRESSION)

a "(2' (EXPRESSION) "115") X
X I)

==)
(IDENTIFIER) "115" •(/2' (SUBSCRIPT LIST) "115"
a ? (SUBSCRIPT EXPRESSION) 3 (EXPRESSION) "115" X X
n

•sc

'COMMENT' I.E.l.A.I.B.5. IF THERE IS A NONLINEAR SUBSCPIP
EXPRESSION, MARK THE VARIABLE GENERAL;

•SD'
(IDENTIFIER) "115" (/ (SUBSCRIPT LIST) "115"
a ? (SUBSCRIPT EXPRESSION)

a '(1' (EXPRESSION) "115") X 7
X n

==)
(IDENTIFIER) "115" '(/!• (SUBSCRIPT LIST) "115"
a 7 (SUBSCRIPT EXPRESSION) 3 (EXPRESSION) "115" X 7 X
n

•SC

•COMMENT' I . E . l . A . I . B . 6 . MARK,THE F IRST SUBSCRIPT
EXPRESSION FOR ANALYSIS;

•SO^
(IDENTIFIER) "115" il (SUBSCRIPT LIST) "115"
3 (SUBSCRIPT EXPRESSION) 3 (EXPRESSION) "115" X 7 X
It

==)
(IDENTIFIER) "115" 1/ (SUBSCRIPT LIST) "115"
a (SUBSCRIPT EXPRESSION)

a • O ' (EXPRESSION) "115") X 7
X It

sc
X ?
X

•sc*

COMMENT I.E.l.A.2. IF THE SUBSCRIPTED VARIABLE IS CONSTANT,
MARK IT so:

•SO*

172 (3.2.2)

(STATEMENT) "111"
a 7 (SUBSCRIPTED VARIABLE) "111"

a (IDENTIFIER) "111" (/ ? ? ?
X

= =)
(STATEMENT) "111"
a ' (SUBSCRIPTED VARIABLE) "111"

a (IDENTIFIER) "111" '(/3' 7 ? ?
X

•%€•
X ; (COMPOUND TAIL) "11"
'END'

•SC^
X

a
•COMMENT^ l . F . I . DFTECT AND OPTIMIZE SUBSCRIPTED VARIABLES WITH

LINEAR SUBSCRIPTS;

•SD'
(BLOCK HEAD) "11" ; (STATEMENT) "11" ;

'BEGIN' (COMPOUND TAIL) "11" ; (STATEMENT) "12" ;
'BEGIN' (COMPOUND TAIL) "12" ; (STATEMENT) "13" ;

(LABEL) "11" : <IF CLAUSE) "ll"
•BEGINS (STATEMENT) "14"
a 7 (SUBSCRIPTED VARIABLE) "11"

a (IDENTIFIER) "11" •t/2^ (SUBSCRIPT LIST) "11" I) X 7
X ; (COMPOUND TAIL) "13"

•END*
= = >

(BLOCK HEAD) "11" ; •DEC^ (SERIAL NUMBER) "ll" •INTEGERS ;
•DEC (SERIAL NUMBER) "12" •INTEGERS ; (STATEMENT) "11" ;
•BEGINS (SERIAL NUMBER) "ll" 'INTEGERS . .=

•REF^ (IDENTIFIER) "11" •(/l^ (SUBSCRIPT LIST) "11" /)
(COMPOUND TAIL) "11" ; (STATEMEN1> "12" ;
•BEGIN' (SERIAL NUMBER) "12" 'INTEGERS ..=

•REF^ (IDENTIFIER) "11" •(/H (SUBSCRIPT LIST) "11" /)
- (SERIAL NUMBER) "11" •INTEGERS :

(COMPOUND TAIL) "12" ; (STATEMENT) "13" ;
(LABEL) " U " : (IF CLAUSE) "11"

•BEGINS (STATEMENT) "14"
a

'COMMENT' l . F . l . A . l . REPLACE ALL OCCURRENCES OF THIS
SUBSCRIPTED VARIABLE BY THE VALUE OF ITS REFERENCE;

'SO'
(STATEMENT) " 1 1 1 "
a 7 (PRIMARY) a (SUBSCRIPTED VARIABLE) "11" X 7 X

==)
(STATEMENT) "111"
a ? (PRIMARY) 3 •VAL^ (SERIAL NUMBER) "11" •INTEGERS % 7 X

(3.2.2) 173

•SC

'COMMENT' l.F.I.A.2. REPLACE SUBSCRIPTED VARIABLES ON THE
LEFT OF THE ASSIGNMENT SYMBOL. USE OF (PRIMARY) IS AN
ARTIFACT;

•SD*
(STATEMENT) "111"
a 7 (SUBSCRIPTED VARIABLE) "11" := 7 X

= ->
(STATEMENT) "111"
a 7 (PRIMARY) a 'VAL' (SERIAL NUMBER) "11" 'INTEGER' X ..= 7 X

'SC

'COMMENT' l.F.l.A.3. REPLACE EACH OCCURRENCE OF 'REF'
SUBSCRIPTED VARIABLE BY ITS REFERENCE SERIAL NUMBER;

'SD'
(STATEMENT) "111"
a 7 (PRIMARY) a •REF^ (SUBSCRIPTED VARIABLE) "11" X 7 X

= =)
(STATEMENT) "111"
a ? (PRIMARY) a (SERIAL NUMBER) "11" 'INTEGER* X 7 X

•SC
X ;

(SERIAL NUMBER) "11" 'INTEGER' ..=
(SERIAL NUMBER) "11" 'INTEGER'
• (SERIAL NUMBER) "12" 'INTEGER* ;

(COMPOUND TAIL) "13"
'END'

'SC
X

a
'COMMENT' l.G.I. DETECT AND OPTIMIZE THE SUBSCRIPTED VARIABLES

WITH CONSTANT SUBSCRIPTS;

'SD'
(BLOCK HEAD) "11" ; (STATEMENT) "ll" ;

'BEGIN' (COMPOUND TAIL) "11" ; (STATEMENT) "12" ;
(STATEMENT) "13" : (STATEMENT) "14" ;

(LABEL) "11" : (IF CLAUSE) "11"
'BEGIN' (STATEMENT) "15"
a 7 (SUBSCRIPTED VARIABLE) "11"

a (IDENTIFIER) "11" 't/3' (SUBSCRIPT LIST) "11" It X 7
X ; (COMPOUND TAIL) "12"

'END'
==)

(BLOCK HEAD) "11" : 'DEC (SERIAL NUMBER) "11" 'INTEGER' ;
<.STATEMENT) "ll" ;
'BEGIN' (SERIAL NUMBER) "11" 'INTEGER' ..=

'REF' (IDENTIFIER) "11" (/ (SUBSCRIPT LIST) "11" /) ;

X74 (3.2.2)

(COMPOUND TAIL) "11" ! (STATEMENT) "12" ;
(STATEMENT) "13" ; (STATEMENT) "14" ;

(LABEL) "11" : <tf CLAUSE) "11"
'BEGIN' (STATEMENT) "15"

a

•COMMENT' l.G.l.A.l. REPLACE EACH OCCURRENCE OF THE
SUBSCRIPTED VARIABLE BY ITS REFERENCE;

'SO'
(STATEMENT) "111"
a 7 (PRIMARY) a (SUBSCRIPTED VARIABLE) "11" X 7 X

= = >
(STATEMENT) "111"
a ? (PRIMARY) 3 'VAL' (SERIAL NUMBER) "11" 'INTEGER' X 7 X

'SC

•COMMENT^ l.G.l.A.2. REPLACE SUBSCRIPTED VARIABLES ON
THE LEFT OF ASSIGNMENT SYMBOL. USE OF (PRIMARY)
IS AN ARTIFACT;

•SO^
(STATEMENT) " H I "
a 7 (SUBSCRIPTED VARIABLE) "11" := 7 X

= =)
(STATEMENT) "111"
3 7 (PRIMARY) a •VAL^ (SERIAL NUMBER) "ll" •INTEGERS X ..= 7 X

•SC
•COMMENT^ l.G.I.A.3. REPLACE EACH OCCURRENCE OF •REF^

SUBSCRIPTED VARIABLE BY ITS REFERENCE INTEGER:

•SO*
(STATEMENT) "111"
a 7 (PRIMARY) 3 •REF" (SUBSCRIPTED VARIABLE) " 1 1 " X 7 X

= =)
(STATEMENT) " 1 1 1 "
a 7 (PRIMARY) a (SERIAL NUMBER) "11" "INTEGER' X 7 X

•SC
X ;

(COMPOUND TAIL) "12"
'END'

•SC
T

•SC

•COMMENT' 2. APPLY THE DEFINITION OF SECTION 4.6.4.2 OF THE REVISED
REPORT (SLIGHTLY MODIFIED) TO FOR-STEP-UNTIL STATEMENTS NOT
OPTIMIZED. HERE •FOR^ "1" MATCHES EITHER •FOR' OR 'FORI'.
FIRST TAKE CARE OF POSITIVE INTEGER STEPS;

•SD'

(3.2.2) 175

•FOR' "1" (VARIABLE) "1" := (EXPRESSION) "1" 'STEP'
(UNSIGNED INTEGER) "1" 'UNTIL' (EXPRESSION) "3" 'DO'

(STATEMENT) "I"
==)

•BEGINS •DEC^ (SERIAL NUMBER) "1" 'LABEL' ;
(VARIABLE) "1" := (EXPRESSION) "I" ;

(SERIAL NUMBER) "I" 'LABEL' :
'IF' (VARIABLE) "1" (= ((EXPRESSION) "3") 'THEN'
'BEGIN' (STATEMENT) "1" ;

(VARIABLE) "1" := (VARIABLE) "I" • (UNSIGNED INTEGER) "I" ;
'GO TO' (SERIAL NUMBER) "I" 'LABEL'

'END'
'END'

•SC

'COMMENT' 3. SAME FOR NEGATIVE INTEGER STEPS;

'SD'
•FOR^ "I" (VARIABLE) "1" := (EXPRESSION) "1" •STEP^

- (UNSIGNED INTEGER) "1" •UNTIL^ (EXPRESSION) "3" •DO'
(STATEMENT) "1"

= =)
•BEGIN' 'DEC (SERIAL NUMBER) "1" 'LABEL' ;

(VARIABLE) "I" := (EXPRESSION) "I" ;
(SERIAL NUMBER) "I" 'LABEL' :

'IF' (VARIABLE) "I")= ((EXPRESSION) "3") 'THEN'
'BEGIN' (STATEMENT) "1" ;

(VARIABLE) "1" := (VARIABLE) "1" - (UNSIGNED INTEGER) "1" ;
'GO TO' (SERIAL NUMBER) "1" 'LABEL'

•END'
'END'

•SC

•COMMENT' 4. SAME FOR THE GENERAL STEP EXPRESSION;

'SD'
'FOR' "1" (VARIABLE) "I" := (EXPRESSION) "1" 'STEP' (EXPRESSION) "2"

'UNTIL' (EXPRESSION) "3" 'DO'
(STATEMENT) "I"

= =)
•BEGIN' 'PEC^ (SERIAL NUMBER) "1" 'LABEL^ ;

(VARIABLE) "I" := (EXPRESSION) "I" ;
(SERIAL NUMBER) "1" •LABEL^ :

•IF^ « (VARIABLE) "I" - ((EXPRESSION) "3"))
* SIGN ((EXPRESSION) "2") (= 0

•THEN^
•BEGINS (STATEMENT) "1" ;

(VARIABLE) "1" := (VARIABLE) "I" • ((EXPRESSION) "2") ;
•GO TO' (SERIAL NUMBER) "1" 'LABEL^

•END^
'END'

•SC

176 (3.2.2)

'COMMENT' 5. APPLY THE DEFINITION OF SECTION 4.6.4.3 OF THE REVISED
REPORT (SLIGHTLY MODIFIED) TO FOR-HHILE STATEMENTS;

•SD^
•FOR^ "1" (VARIABLE) "1" := (EXPRESSION) ••1"

•WHILES (EXPRESSION) "2" 'OO^
(STATEMENT) "1"

==)
•BEGIN' 'DEC (SERIAL NUMBER) "1" 'LABEL' i
(SERIAL NUMBER) "1" 'LABEL' :

(VARIABLE) "1" := (EXPRESSION) "1" ;
'IF' (EXPRESSION) "2" 'THEN'
'BEGIN' (STATEMENT) "I" ;

'GO TO' (SERIAL NUMBER) "1" 'LABEL*
•END'

•END*
•SC

•COMMENT* 6. EXPAND THE ARITHMETIC EXPRESSION ACCORDING TO SECTION
4.6.4.1;

*SD'
'FOR' "1" (VARIABLE) "1" := (EXPRESSION) "I" 'DO* (STATEMENT) "1"

==)
'BEGIN' (VARIABLE) "1" := (EXPRESSION) "1" ;

(STATEMENT) "1"
•END'

'SC

'COMMENT' 7. EXPAND MULTIPLE FOR LIST ELEMENTS WHEN THE CONTROLLED
STATEMENT IS ALREADY A PROCEDURE;

'SD'
'FOR' "1" (VARIABLE) "I" := (FOR LIST) "1" ,

(FOR LIST ELEMENT) "1" 'DO' (PROCEDURE STATEMENT) "1"
==)

•BEGIN'
' FORI ' (VARIABLE) " 1 " := (FOR L I S T) " 1 " 'DO^

(PROCEDURE STATEMENT) " 1 " ;
'FORI ' (VARIABLE) " I " := (FOR LIST ELEMENT) " 1 " 'D0»

(PROCEDURE STATEMENT) " 1 "
•END^

•SC

•COMMENT' 8 . EXPAND MULTIPLE FOR LIST ELEMENTS FOR OTHER STATEMENTS;

•SD^
•FOR' "1" (VARIABLE) "1" := (FOR LIST) "1- ,

<FOR LIST ELEMENT) "1" 'DO' (STATEMENT) «•!"

•BEGINS •DEC^ (SERIAL NUMBER) "1" •PROCEDURE' ;

(3.2.2) 177

'SKIP' (SERIAL NUMBER) "I" 'PROCEDURE'
'BEGIN* *DEC* (SERIAL NUMBER) "2" *RESULT* ;

(STATEMENT) "1"
'END' ;
'FORI' (VARIABLE) "I" := (FOR LIST) "I" 'DO'

(SERIAL NUMBER) "1" 'PROCEDURE' ;
'FORI' (VARIABLF) "1" := (FOR LIST ELEMENT) "1" '00'

(SERIAL NUMBER) "1" 'PROCEDURE'
'END'

•SC

'COMMENT' 9. RESTRUCTURE LABELED FOR STATEMENTS;

•SD^
(LABEL) "1" : (FOR STATEMENT) "1"

==)
(LABEL) "1" : •BEGIN^ (FOR STATEMENT) "1" •END*

•SC^
X

178

(4) 179

4. Discussion and Conclusion

In this section I discuss some aspects of the intra-grammatical

transformation system considered in toto. These include certain

of the restrictions introduced in the consistency condition on IGTs

and their relation to the overall system. In addition, some extensions

to the system are considered; these range from fairly simple to

rather fundamental, and indicate directions for further research.

Additional potential applications of IGTs beyond those given here

are also discussed; they, too, indicate areas for further investiga

tion. Finally, some parallels between IGTs and natural language

transformational grammars are briefly outlined.

180 (4.1)

4.1 Comments on the Definition of Intra-Grammatical Transformations

Three aspects of the definition of IGTs require further brief

discussion; these are the intra-grammaticality restriction, the

restriction that the variable of an indefinite pattern occur uniquely

in the SDs of an IGT, and the difference between the sequencing

rules for transformations and subtransformations.

The restriction that the result of applying a transformation

to a parse tree be a parse tree of the same grammar as that of the

parse tree transformed has two important consequences: first, it

avoids the problem of specifying the tree structure for the trans

formed parse tree and permits assignment of a tree structure to

the transformation itself; and second, it permits the tree structure

of indefinites to be derived from their match in the SD, thereby

avoiding the necessity of reparsing the transformed string after

each application of a transformation. Such reparsing would, of

course, considerably increase the computation required to apply

a transformation set sequence to a program.

In this context one should also note that the manner in which

the grammar used is extended to cover the constructions introduced

via transformations can greatly affect their elegance and simplicity.

For example, the transformations for identifier denotation would

be considerably more complex than those of section S.1.2 if

<denotatlon's had been introduced into the grammar by adding produc

tions with <denotation' substituted for <identifier' rather than

(4.1) 181

making identifiers <identifier token's and adding the single pro

duction:

<identifier> ::= <identifier token' | <denotation'

Also, in certain cases appropriate choice of left or right recur

sive productions for certain constructions in the grammar can

simplify the transformations. Thus the Algol 60 productions for

<block head' and <compound tail' are particularly convenient in

the transformations which move information from the array, switch,

and procedure declarations of a block into its <compound tail'.

The preparation of the formal definition of IGTs given in

section 2 uncovered certain anomalies in the implementation of IGTs.

One of these was the restriction that the occurrence of the

variable of an indexed indefinite pattern be unique in the SDs

of an IGT. This restriction is necessary .to insure that an

occurrence of that variable in an indefinite pattern in the SC

denotes an element of the environment having a unique indefinite

skeleton. The formal definition shows that a variable can actually

stand for two different things: the identity of a particular parse

tree, or the indefinite skeleton associated with a particular

match of that parse tree. It might, therefore, be appropriate to

have separate indices for parse trees and indefinite skeletons,

but how to do so while retaining the simplicity of the present nota

tion is a difficult problem. Permitting indices on free symbols

might be one solution (as was in fact done in an early version

182 (̂ -1)

of IGTs), but doing so suggests that the free symbols can be

rearranged, which, of course, they cannot without destroying the

tree structure they represent.

The differences in the sequencing rules for transformations

and subtransformations, specifically the fact that a transformation

set is reapplied throughout a transformed parse tree whereas the

subtransformation lists of a subtransformation sequence are applied

only at the top of the transformed subtree produced from their

associated pattern tree, may seem at first to be another ad hoc

consequence of the implementation of IGTs. The present rules cer

tainly work well, however, and may be at least partially justified

by the difference in scope rules for transformations and subtransfor

mations; that is, since subtransformations have access to "global"

variables not in their own SD, it may be reasonable to restrict

them from indiscriminate application throughout the transformed

subtree.

(4.2) 183

4.2 Possible Extensions to Intra-Grammatical Transformations

Several directions for extension of IGTs are possible. One

simple and useful notatlonal extension would be to introduce Markov

terminal transformations in addition to the present simple trans

formations (cf. [29], cha. 5). A terminal transformation, if it

applies, specifies that the application of the transformation list

in which it appears is to be unconditionally terminated after applying

it. Such transformations would be especially useful where it is

presently necessary to place a marker or otherwise artifically change

the transformed parse tree to terminate application of a transforma

tion list (cf, for example, the introduction of the marker '(/I'

in transformation 1 of the <array segment'-transformation list of

section 3.1.2). For similar reasons, nonterminal markers (synonyms

for nonterminal symbols) might be useful in addition to the presently

available terminal markers.

Two other essentially notatlonal extensions, somewhat more

complex than the above, are the introduction of logical combinations

of conditions for matching in the SD (including conjunction, disjunc

tion, and negation of pattern trees at a particular node), and the

introduction of a (parameterless) procedure mechanism for labeling

groups of transformations. The former would be useful for combining

certain transformations which have almost identical structure but

now must be written separately (for example the I.E.l.A.I.E.l.A sub-

transformation list of section 3.2.2). The latter extension would

184
(4.2)

be useful where the same subtransformation list or sequence appears

in more than one transformation, but it would greatly complicate

the scope rules for subtransformations.

In considering the above extensions one should keep in mind

that, in view of the result of section 2.4, they would only increase

the convenience of using IGTs, not their descriptive power. Thus

their introduction must be weighed carefully against the notatlonal

problems it would cause, lest whatever elegance and convenience

the present formulation possesses be sacrificed for no real gain.

Several aspects of the definition of IGTs are deserving of

further experimental or theoretical investigation. Experimentation

with variations of the sequencing rules employed here would be inter

esting. For example, instead of alternating the reapplication of

the transformation set with the application of subtransformation

sequences in the SC, all of the subtransformation sequences might

be applied at their respective nodes and then the entire transformed

parse tree rescanned (cf. 2.3.2(3) Trset Recursive Result) to reapply

the transformation set. As there are no obvious theoretical criteria

for selecting one or the other of these sequencing methods, experi

mentation could be used to verify which is more elegant or efficient.

Areas for theoretical investigation include attempting to derive

conditions which guarantee termination of the application of a

transformation list, and conditions which guarantee that the program

after transformation is semantically equivalent to the program before

transformation. Iturriaga [20] has made some progress toward solving

(4.2) 185

the former problem, but the presence of indefinites in IGTs compli

cates it considerably.

Lastly, it would be interesting to investigate the problem

of adapting transformations to transform the abstract syntax of

a program (in the sense of the Vienna Report) rather than its concrete

syntax, as is done here.

186
(4.3)

4.3 other Applications nf Intra-Grammatiral Transformations

A number of applications of transformations in addition to

those discussed in section 3 seem worthy of investigation. One

of these, a problem currently of interest at Argonne National Lab

oratory [12], is that of automatically or semiautomatically converting

an existing program to use multiple-precision arithmetic. Involved

would be conversion of all arithmetic operations into calls on subrou

tines or functions in a multiple-precision arithmetic package, and

Introduction of the appropriate array declarations for the multiple-

precision variables. Assuming a suitable grammar for the language

used, this problem should be quite amenable to transformational

solution.

There is also widespread general interest in designing languages

which can be extended by the programmer. One approach to this problem

is to introduce a macro facility into higher-level programming lang

uages. Macro expansion should be a natural application for transforma

tions (and indeed first motivated this investigation of them), assuming

the problem of conveniently extending the context free grammar of

the language can be solved.

Finally, the application of transformations to other programming

language definitional problems could be investigated. One of these

is the description of the syntax of DO-loops in Fortran; it would

be interesting to compare a transformational description with the

rather inelegant extended-BNF description of Rabinowitz [32]. Two

(4.3) 187

other definitional problems potentially amenable to transformational

solution are the context condition and the extensions of Algol

68 [36]. These problems are somewhat similar to the identifier

denotation and for statement optimization problems of Algol 60.

Some modifications might have to be made to IGTs in order to work

with the infinite grammar of Algol 68.

188 (4.4)

4.4 Conclusion

This work was begun with the intent of showing that Chomsky's

concept of transformational grammar could be adapted and implemented

for use with programming languages, and that transformational grammars

so adapted are useful for solving certain programming language

definitional problems. I believe that all three of these goals

have been achieved, although much further work could be done. There

remain three related observations on the philosophical implications

of this work.

The first concerns a hypothesis of J. C. Reynolds [33], somewhat

analogous to the "deep structure hypothesis" of Chomsky [10], con

cerning programming languages, viz: When a programmer writes a

program, he actually conceives of a completely unambiguous tree

like structure (in which there are no duplicated identifier names,

all identifiers are directly associated with their types, etc.),

which he then transcribes into a linear string in some programming

language.

The role of the syntactic parts of the programming language

definition (including the production rules, identifier scope rules,

and "abbreviations" such as fo^ statements) is thus to provide the

programmer a maximum of convenience in making that transcription

by relieving him of having to concern himself unnecessarily with

details such as duplication of identifier names and the construction

of loops. •

(4.4) 189

The ability to give a purely grammatical description of identifier

denotation and the semantics of for statements, which may be regarded

as helping to restore the linear string to the tree-like structure

conceived by the programmer, thus lends support to this hypothesis.

These examples also support an observation by Chomsky [10] (also

related to the deep structure hypothesis) that nearly all transforma

tions proposed for use in natural language grammars have the property

that the semantics of a sentence is invariant under transformation.

He suggests that such invariance may be a linguistic universal,

i.e., a property of all correct transformational grammars for all

natural languages.

Even if the transformations in the examples of section 3 are

regarded as defining identifier denotation and the semantics of

for statements, these definitions must concur with our previous

understanding of those concepts. Thus this work lends even further

weight to the semantic invariance hypothesis.

Finally, the Intra-grammatical transformation system suggests

the hypothesis that bottom-up application of transformation sets

is a linguistic universal. Such an application rule is suggested

by Chomsky in [10] for natural languages, and by Grau, Hill, and

Langmaak in [15] for the optimization of multiple for statements.

And it is certainly supported by the examples of section S, especially

the identifier denotation transformation set.

190

(5) 191

5. Bibliography

1. Allen, F. E. Program optimization. In Halpern, M. I., and Shaw,
C. J., (Eds.). Annual Review in Automatic Programming, _5.
Pergamon, Oxford, 1969, pp. 239-307.

2. Bach, E. An Introduction to Transformational Grammars. Holt,
Rinehart, and Winston, New York, 1964.

3. de Bakker, J. W. Semantics of programming languages. In Tou,
J. T., (Ed.). Advances in Information Systems Science. Plenum
Press, New York, 1969, pp. 173-227.

4. de Bakker, J. W. Formal Definition of Programming Languages, with
an Application to the Definition of ALGOL 60. Mathematisch
Centrum, Amsterdam, 1967.

5. Bayer, R., Murphree, E., Jr., and Gries, D. User's Manual for
the ALCOR-ILLINOIS-7090 ALGOL-60 Translator. University of
Illinois, Urbana, 111., September, 1964.

6. Boyle, J. M. and Grau, A. A. An algorithmic semantics for ALGOL
60 identifier denotation. Jour. ACM, L7, 2 (April, 1970),
361-382.

7. Brody, T. A. Symbol-Manipulation Techniques for Physics. Gordon
and Breach, New York, 1968.

8. Busam, V. A., and Englund, D. E. Optimization of expressions in
Fortran. Comm. ACM 12^, 12 (Dec. 1969), 666-674.

9. Caracciolo di Forino, A. Generalized Markov algorithms and
automata. In Caianiello, E. R. (Ed.). Automata Theory.
Academic Press, New York, 1966.

10. Chomsky, N. Aspects of the Theory of Syntax. M.I.T. Press,
Cambridge, Massachusetts, 1965.

11. Chomsky, N. Three models for the description of language. IRE
Trans. Inform. Theor. IT-2 (1956), 113-124. Reprinted, with
corrections, in Luce, R. D., Bush, R., and Galanter, E. (Eds.).
Readings in Mathematical Psychology, Vol. II. Wiley, New York,
1965.

12. Cody, W. J., Jr. Private communication.

13. Davis, M. Computability and Unsolvability. McGraw-Hill, New
York, 1958.

192 (5)

14. Friedman, J. A computer system for transformational grammar.
Corm. ACM 'n, 6 (June 1969), 341-348.

15. Grau, A. A., Hill, U., and Langmaack, H. Translation of ALGOL
60. Springer-Verlag, Berlin, 1967.

16. Gries, D., Paul, M., and Wlehle, H. R. Some techniques used
in the ALCOR ILLINOIS 7090. Comm. ACM &_, 8 (August, 1965),
496-500.

17. Hawkins, E. N., and Huxtable, D. H. R. A multi-pass translation
scheme for ALGOL 60. In Goodman, R., (Ed.). Annual Review in
Automatic Programming, 3^. MacMillan, New York, 1963, pp.
16S-205.

18. Hays, D. G. Introduction to Computational Linguistics. American
Elsevier, New York, 1967.

19. Ingerman, P. Z., and Merner, J. N. Suggestions on ALGOL 60 (Rome)
issues. Corm. ACM 6_, 1 (Jan. 1963), 20-23.

20. Iturriaga, R. Contributions to mechanical mathematics. Ph.D.
Thesis, Carnegie-Mellon Univ., Pittsburgh, Penn., May, 1967.

21. Knuth, D. E. The remaining trouble spots in ALGOL 60. Comm.
ACM 10^, 10 (Oct. 1967), 611-618.

Lowry, E. S., and Medlock, C. W. Object code optimization.
Comm. ACM U, 1 (Jan. 1969), 13-22.

Lucas, P., Lauer, P., and Stigleitner, H. Method and notation
for the formal definition of programming languages. IBM Labora
tory Vienna, Techn. Report TR 25.087, 28 June, 1968.

24. Maruyama, K. A tree transformation system based on NUCLEOL
M.S. Thesis, Univ. of 111., Urbana, 111., Feb., 1970.

25. McCarthy, J. A formal description of a subset of ALGOL. In

f^lr '^\^''ri'^' ^̂ '̂•.̂" •̂''̂'"̂^ Language Description Languages
for Computer Programming. North-Holland, Amsterdam, 1966, 1-12.

26. McCarthy J. Towards a mathematical science of computation. In
Popplewell, C. M., (Ed.). Information Processing 1962. North-
Holland, Amsterdam, 1963, 21-28.

"• r^fr'!?^' ^i' ^* "̂ ^ ^^^^ ^-^ Programmer's Manual. MIT Press, Cambridge, Mass., 1968.

22.

23.

(5) 193

28. McKeeman, W. M. , Horning, J. J., Nelson, E. C , and Wortman,
D. B. The XPL compiler generator system. Proc. 1968 FJCC,
Thompson, Washington, 1968, pp. 617-635.

29. Mendelson, E. Introduction to Mathematical Logic.
D. Man Nostrand, Princeton, New Jersey, 1964.

30. Naur, P. (Ed.). Revised report on the algorithmic language
ALGOL 60. Comm. ACM b_, 1 (Jan. 1963), 1-17.

31. Petrick, S. R. A recognition procedure for transformational
grammars. Ph.D. Thesis, MIT, Cambridge, Mass., 1965.

32. Rabinowitz, I. N. Report on the algorithmic language FORTRAN II.
Comm. ACM 5_, 6 (June 1962), 327-337.

33. Reynolds, J. C. Private communication.

34. Reynolds, J. C. COGENT Programming Manual. Report ANL-7022,
Argonne National Laboratory, Argonne, III., March 1965.

35. Samelson, K., and Bauer, F. L. Sequential formula translation.
Comm. ACM 3_, 2 (Feb. 1960), 76-83.

36. van Wijngaarden, A. (Ed.), Mailloux, B. J., Peck, J. E. L., and
Koster, C. H. A. Report on the Algorithmic Language Algol 68.
Report MRlOl, Mathematisch Centrum, Amsterdam, Feb. 1969.

194

(6) 195

Appendices

196 (6.1)

6.1 Grammar for Transformational Examples

Listed below i s the modified Algol 60 grammar (and the synonyms

for terminal symbols) used for the t ransformat ions and examples of

sect ions 3, 6 .2 , and 6 .3 . The modif ica t ions to the Algol 60 grammar

consis t pr imari ly in making < i d e n t i f i e r ' (a c t u a l l y < i d e n t i f i e r t o k e n ') ,

<unsigned i n t e g e r ' , <logical v a l u e ' , <adding o p e r a t o r ' , <mult ip lying

ope ra to r ' , < re l a t iona l o p e r a t o r ' , and <dummy s t a t e m e n t ' t e rmina l

symbols, and removing c e r t a i n i ncons i s t enc i e s a s soc i a t ed with <number',

< s t r i n g ' , <expression' (the d i s t i n c t i o n between a r i t h m e t i c . Boolean,

and des ignat ional express ions , which can only be made on the b a s i s of

type information for v a r i a b l e s , i s dropped) , < i d e n t i f i e r ' , <function

des igna tor ' (a function des ignator with no parameters i s c a l l e d a

<va r i ab l e ') , <switch d e s i g n a t o r ' , and <procedure d e s i g n a t o r ' . In

addit ion systematic changes were made to <procedure head ing ' to

el iminate occurrences of the symbol <empty'. F i n a l l y , <unsigned

i n t e g e r ' as a < l a b e l ' i s not al lowed.

(6.1) 197

(INTEGER) ::= (UNSIGNED INTEGER)
(INTEGER) ::= (ADDING OPERATOR) (UNSIGNED INTEGER)
(DECIMAL FRACTION) ::= . (UNSIGNED INTEGER)
(EXPONENT PART) :
(DECIMAL NUMBER)
(DECIMAL NUMBFR)
(DECIMAL NUMBER)
(UNSIGNED NUMBER)
(UNSIGNED NUMBER)
(UNSIGNED NUMBER)
(STRING) : : = • (• •) •
(STRING) : : = • • • •
(IDENTIFIER) ::= (IDENTIFIER TOKEN)
(IDENTIFIER) ::= (DENOTATION)
(SIMPLE VARIABLE) ::= (IDENTIFIER)
(SUBSCRIPT EXPRESSION) ::= (EXPRESSION)
(SUBSCRIPT LIST) ::= (SUBSCRIPT EXPRESSION)

• (INTEGER)
= (UNSIGNFO INTEGER)
= (DECIMAL FRACTION)
= (UNSIGNED INTEGER) (DECIMAL FRACTION)
•= (DECIMAL NUMBER)
= (EXPONENT PART)
= (DECIMAL NUMBER) (EXPONENT PART)

(SUBSCRIPT LIST) ::= (SUBSCRIPT LIST) ,
(SUBSCRIPTED VARIABLE) ::= (IDENTIFIER)

(SUBSCRIPT EXPRESSION)
((SUBSCRIPT LIST))

(VARIABLE)
(VARIABLE)
(PRIMARY)
(PRIMARY)
(PRIMARY)
(PRIMARY)
(PRIMARY)
(PRIMARY)
(FACTOR) :
(FACTOR) :
(TERM) ::=
(TERM) ::=
(ARITHMETIC
(ARITHMETIC
(ARITHMETIC

:= (SIMPLE VARIABLF)
:= (SUBSCRIPTED VARIABLE)
= (UNSIGNED NUMBER)
= (VARIABLE)
= (PROCEDURE DESIGNATOR)
= ((EXPRESSION))
= 'VAL^ (VARIABLE)
= •REF^ (VARIABLE)

= (PRIMARY)
= (FACTOR) •POWERS (PRIMARY)
(FACTOR)
(TERM) (MULTIPLYING OPERATOR) (FACTOR)

(TERM)
(ADDING qPERATOR) (TERM)
(ARITHMETIC EXPRESSION)

(ADDING OPERATOR) (TERM)
(RELATION) ::= (ARITHMETIC EXPRESSION) (RELATIONAL OPERATOR)

(ARITHMETIC EXPRESSION)

EXPRESSION) :
EXPRESSION) :
EXPRESSION) :

PRIMARY) :
PRIMARY) :
PRIMARY) :
SECONDARY)
SECONDARY)
FACTOR)
FACTOR)

(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(BOOLEAN
(IMPLICATION)
(IMPLICATION)
(SIMPLE BOOLEAN)
(SIMPLE BOOLEAN)
(EXP IF CLAUSE)

(LOGICAL VALUE)
(RELATION)
(ARITHMETIC EXPRESSION)
= (BOOLEAN PRIMARY)
= - (BOOLEAN PRIMARY)

:= (BOOLEAN SECONDARY)
:= (BOOLEAN FACTOR) I (BOOLEAN SECONDARY)

TERM)
TERM)

:= (BOOLEAN FACTOR)
:= (BOOLEAN TERM) | (BOOLEAN FACTOR)
= (BOOLEAN TERM)
= (IMPLICATION) •IMPLIES' (BOOLEAN TERM)

:= (IMPLICATION)
:= (SIMPLE BOOLEAN) 'EOUIV (IMPLICATION)
= (IF CLAUSE)

198 (6.1)

^iivDDc<:cinw> . ; = (S IMPLE BOOLEAN)
TcXPRESsloN) ; ; = < F J P I F CLAUSE) (S IMPLE BOOLEAN)

•ELSE^ (EXPRESSION)
(LABEL) : : = (I D E N T I F I E R)
(UNLABELLEO BASIC STATEMENT)
(UNLABELLED BASIC STATEMENT)
(UNLABELLEO BASIC STATEMENT)
(UNLABELLED BASIC STATEMENT)
(UNLABELLED BASIC STATEMENT)
(UNLAOFLLEO BASIC STATEMENT) C T A T F M F N T)
(BA<;ir STATEMENT) : : = (UNLABFLLED BASIC STATEMENT)
(B A s I c STATEMENT) : : = <LABEL) : <BASIC STATEMENT)

= (ASSIGNMENT STATEMENT)
= (GO TO STATEMENT)
= (DUMMY STATEMENT)
= (PROCEDURE STATEMENT)
= (RETURN STATEMENT)
= (S K I P STATEMENT)

(UNCONDITIONAL STATEMENT)
(UNCONDITIONAL STATEMENT)
(UNCONDITIONAL STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT) : :

(BASIC STATEMENT)
= (COMPOUND STATEMENT)
= (BLOCK)

(UNCONDITIONAL STATEMENT)
= (CONDITIONAL STATEMENT)
= (FOR STATEMENT)

(COMPOUND T A I L) : : = (STATEMENT) •FND^
(COMPOUND T A I L) : : = (STATEMENT) ; (COMPOUND T A I L)
(BLOCK HEAD) : : = •EEGIN^ (DECLARATION)
(BLOCK HEAD) : : = (BLOCK HEAD) ; (DECLARATION)
(UNLABELLEO COMPOUND) : : = •BEGIN^ (COMPOUND T A I L)
(UNLABELLED BLOCK) : : = (BLOCK HEAD) ; (COMPOUND T A I L)
(COMPOUND STATEMENT) : : = (UNLABELLED COMPOUND)
(COMPOUND STATEMENT) : : = (L A B E L) : (COMPOUND STATEMENT)
(BLOCK) : : = (UNLABELLED BLOCK)
(BLOCK) : : = (LABEL) : (BLOCK)

(PROGRAM) :
(PROGRAM) :
(PROGRAM) :
(LEFT PART)

= (BLOCK)
= (COMPOUND STATEMENT)
= •COMMENT^
: : = (VARIABLE) : =

(LEFT PART L I S T) : : = (LEFT PART)
(LEFT PART L I S T) : : = (LEFT PART L I S T) (LEFT PART)
(ASSIGNMENT STATEMENT) : : = (L E F T PART L I S T) (EXPRESSION)
(GO TO STATEMENT) : : = •GOTO^ (EXPRESSION)
(DUMMY STATEMENT) : : = (EMPTY)
(I F CLAUSE) : : = • I F ^ (EXPRESSION) •THEN^
(I F STATEMENT) : : = (I F CLAUSE) (UNCONDITIONAL STATEMENT)
(CONDITIONAL STATEMENT) : : = (I F STATEMENT)
(CONDITIONAL STATEMENT) : : = (I F STATEMENT) •ELSE^ (STATEMENT)
(CONDITIONAL STATEMENT) : : = (I F CLAUSE) (FOR STATEMENT)
(CONDITIONAL STATEMENT) : : = (L A B E L) : (CONDITIONAL STATEMENT)
(FOR LIST ELEMENT) : : = (EXPRESSION)
(FOR L IST ELEMENT) : : = (EXPRESSION) ' S T E P ' (E X P R E S S I O N)

' U N T I L ' (EXPRESSION)
(FOR LIST ELEMENT) : : = (EXPRESSION) ' W H I L E ' (EXPRESSION)
(FOR L I S T) : : = (FOR L IST ELEMENT)
(FOR L I S T) : : = (FOR L I S T) , (FOR L I S T ELEMENT)
(FOR CLAUSE) : : = 'FOR' (V A R I A B L E) : = (FOR L I S T) ' D O '
(FOR STATEMENT) : : = (FOR CLAUSE) .(STATEMENT)
(FOR STATEMENT) : : = (LABEL) : (FOR STATEMENT)

(6.1) 199

(PARAMETER DELIMITER) ::= ,
(PARAMETER DELIMITER) ::=) (IDENTIFIER) : (
(ACTUAL PARAMETER) ::= (STRING)
(ACTUAL PARAMETER) ::= (EXPRESSION)
(ACTUAL PARAMETER LIST) ::= (ACTUAL PARAMETER)
(ACTUAL PARAMETER LIST) ::= (ACTUAL PARAMETER LIST)

(PARAMETER DELIMITER) (ACTUAL PARAMETER)
(IDENTIFIER 1) ::= (IDENTIFIER)
(PROCEDURE DESIGNATOR) ::= (IDENTIFIER I)

((ACTUAL PARAMETER LIST))
(PROCEDURE STATEMENT) ::= (PROCEDURE DESIGNATOR)
(PROCEDURE STATEMENT) ::= (IDENTIFIER 1)
(RETURN STATEMENT) ::= 'RETURN' (EXPRESSION)
(SKIP STATEMENT) ::= 'SKIP' (IDENTIFIER) (BLOCK)
(DECLARATION) ::= (TYPE DECLARATION)

(ARRAY DECLARATION)
(SWITCH DECLARATION)
(PROCEDURE DECLARATION)
(LABEL DECLARATION)
(RESULT DECLARATION)
'DEC (DENOTATION)

(SIMPLE VARIABLE)
(SIMPLE VARIABLE) , (TYPE LIST)

(DECLARATION)
(DECLARATION)
(DECLARATION)
(DECLARATION)
(DECLARATION)
(DECLARATION)
(TYPE LIST) ::
(TYPE LIST) ::
(TYPE)
(TYPE)
(TYPE)

'REAL'
' INTEGER'
'BOOLEAN'

(LOCAL OR OWN TYPE)
(LOCAL OR OWN TYPE)
(TYPE DECLARATION) :
(LOWER
(UPPER
(BOUND

(TYPE)
'OWN' (TYPE)

(LOCAL OR OWN
BOUND) ::= (EXPRESSION)
BOUND) ::= (EXPRESSION)
PAIR HEAD) ::= (LOWER BOUND) :

TYPE) (TYPE LIST)

(BOUND PAIR) ::= (BOUND PAIR HEAD) (UPPER BOUND)
(BOUND PAIR LIST) ::= (BOUND PAIR)
(BOUND PAIR LIST) ::= (BOUND PAIR LIST) , (BOUND PAIR)
(ARRAY SEGMENT) ::= (IDENTIFIER) (/ (BOUND PAIR LIST) /)
(ARRAY SEGMENT) ::= (IDENTIFIER) , (ARRAY SEGMENT)
(ARRAY LIST) ::= (ARRAY SEGMENT)
(ARRAY LIST) ::= (ARRAY LIST) , (ARRAY SEGMENT)
(ARRAY DECLARATION) ::= 'ARRAY' (ARRAY LIST)
(ARRAY DECLARATION) ::= (LOCAL OR OWN TYPE) 'ARRAY' (ARRAY LIST)
(SWITCH LIST) ::= (EXPRESSION)
(SWITCH LIST) ::= (SWITCH LIST) , (EXPRESSION)
(SWITCH DECLARATION) ::= 'SWITCH' (IDENTIFIER) := (SWITCH LIST)
(FORMAL PARAMETER) ::= (IDENTIFIER)
(FORMAL PARAMETER LIST) ::= (FORMAL PARAMETER)
(FORMAL PARAMETER LIST) ::= (FORMAL PARAMETER LIST)

(PARAMETER DELIMITER) (FORMAL PARAMETER)
(FORMAL PARAMETER PART) ::= ((FORMAL PARAMETER LIST))
(IDENTIFIER LIST) ::= (IDENTIFIER)
(IDENTIFIER LIST) ::= (IDENTIFIER LIST) , (IDENTIFIER)
(VALUE PART) ::= 'VALUE' (IDENTIFIER LIST) ;

200 (6.1)

'STRING'
(TYPE)
•ARRAYS
(TYPE) •ARRAY*
•LABEL'
'SWITCH'
'PROCEDURE'
(TYPE) 'PROCEDURE'

= (SPECIFIER) (IDENTIFIER LIST) ;
= (SPECIFICATION PART) (SPECIFIER)

(IDENTIFIER)
(IDENTIFIER)
(IDENTIFIER)

(FORMAL
(FORMAL

PARAMETER
PARAMETER

(SPECIFIER)
(SPECIFIER)
(SPECIFIER)
(SPECIFIER)
(SPECIFIER)
(SPECIFIER)
(SPECIFIER)
(SPFCIFIER)
(SPECIFICATION PART) :
(SPECIFICATION PART) :

(IDENTIFIER LIST)
(PROCEDURE HEADING) :
(PROCEDURE HEADING) :
(PROCEDURE HEADING) :
(SPECIFICATION PART)
(PROCEDURE HEADING) :

(VALUE PART) (SPECIFICATION PART)
(PROCEDURE BODY) ::= (STATEMENT)
(PROCEDURE DECLARATION) ::= 'PROCEDURE'

(PROCEDURE BODY)
(PROCEDURE DECLARATION) ::= (TYPE) 'PROCEDURE'

(PROCEDURE HEADING) (PROCEDURE BODY)
(LABEL DECLARATION) ::= 'LABEL' (IDENTIFIER)
(RESULT DECLARATION) ::= 'RESULT' (IDENTIFIER)
(RESULT DECLARATION) ::= (TYPE) 'RESULT' (IDENTIFIER)
(SERIAL NUMBER) ::= » (UNSIGNED INTEGER)

= (SPECIFIER)
= 'FORMAL'
= (TYPE) 'RESULT'
= 'RESULT^

(SERIAL NUMBER) (TYPE INDICATOR)

PART) ;
PART) ;

;= (I D E N T I F I E R) (FORMAL PARAMETER PART)

(PROCEDURE HEADING)

(TYPE INDICATOR)
(TYPE INDICATOR)
(TYPE INDICATOR)
(TYPE INDICATOR)
(DENOTATION) : : =

(6.1) 201

TERMINAL SYMBOL SYNONYMS

(LOGICAL VALUE) 'TRUE^ •FALSE^
(ADDING OPERATOR) •
(MULTIPLYING OPERATOR) * I 11 •/•
•POWERS **
(RELATIONAL OPERATOR) = () (=) =

•EO* •LS^ •GR* *L0* *G0*
•NO* •EQUAL* *LESS*
•GREATER* •NOT GREATER^
•NOT LESS^ •NOT EQUAL*
NOT

fi •AND'
I 'OR'
•IMPLIES* 'IMPL'

$

(' (1' ' (2' •(3^ •(4^
•{5^ •(&•

(/ •(/l* •(/2^ *</3*
•(/4^ *(/5* '1/6*

•FORI 'FORI* *F0R2« •F0R3«
•F0R4* *F0R5*

•BEGIN* 'BEGINl* 'BEGIN2'
'8EGIN3' 'BEGIN4'

'PROCEDURE' 'PROC

202 (6.2)

6.2 Identifier Denotation Examples

In this section are given two examples of the application of

the transformation set sequence consisting of the identifier denotation

transformation set described in section 3.1.

The first of these examples is a program which demonstrates

the application of the various transformations and transformation

lists in the transformation set. The action of the <procedure

declaration'-transformation list and the appropriate transformations

of the <block'-transformation list is illustrated by the denotation

of the procedures int proc and properproc and their calls. The

former is example 3.1.1 (2), but note that when transformed by the

complete transformation set, the procedure body is converted into

a skip statement. (Note also the denotation of the value parameters

valreal and valarray.) The procedure properproc illustrates

the denotation of a label Internal to a procedure body which is

not a block, while the for statement illustrates the denotation

of a label (forinternal) internal to its controlled statement. The

remaining declarations illustrate the operation of the other elements

of the <block'-transformation list, together with the transformations

which convert declarations to single form, and which produce calls

to allocate from the information in array and switch declarations.

Note that the construction at proglabel7 is example 3.1.1 (1) .

The first example program, first in its original form, then

after transformation is:

' B E G I N '

' INTEGER' 'PROCEDURE' INTPROC (VALREAL , VALARRAY , FORMAL) ;

'VALUE' VALREAL , VALARRAY ;

'REAL ' VALREAL ;

'ARRAY' VALARRAY ;

IMPROC := ' I F * FCRMAL (= 0 •THEN'

I ' E L S E '
ENTIER I VALREAL + VALARRAY < / ! /) * FORMAL) + INTPROC (VALREAL , VALARRAY , FORMAL - 1

)
'PROCEDURE' PROPERPRCC (FORMAL , LABEL)

' B E G I N '

PRCCINTERNAL : FORMAL := FORMAL - 1 ;

'GOTO' ' I F ' FORMAL (= C 'THEN'

PRCCINTERNAL ' E L S E '

LABEL

'END' ;

'REAL' A ;

'INTEGER' C , N , M , K :

•ARRAY' B , 0 1/ 1 : 2 /) ;

'SWITCH' S := PROGLABELl , PR0GLABEL2 ;

N := M := K := 10 ;

'FCR' C := 1 , 2 'DO'

FORINTERNAL : B (/ C /) := 3 . 14159 / C

C := 3 ;

C := INTPROC (B (/ 2 /) , B

PRCGLABELl : 'BEGIN^

•ARRAY' A (/ I : N , 1 :

A (/ 1 , 1 , 0 /) := 1

•END^ ;

PRCPERPPOC (C , S (/ 2 /))

PRCGLABEL2 :

C)

- 2 * K 2 * K /)

'ENO^

'BEGINS

•DEC^

•DEC

•DEC

•DEC^

•CEC^

•DEC^

•DEC*

CEC

•DEC*

DEC

CEC

•DEC^

«

»

«

»
It

H

n

«

CC00092q

00000930

COOC0920

00000921

00000922

00000923

00000924

00000925

CCOC0926

CC000931

00000927

C00C0928

• INTEGERS •PROCEDURE^

•PROCEDURE^ ;

•REAL^ ;

• INTEGERS

• INTEGERS

«INTEGERS

• INTEGERS

•REAL^ •ARRAYS ;

•REAL^ •ARRAY' ;

'SWITCH' ;

'LABEL' ;

•LABEL' ;

ALLOCATE I # 00000931 'SWITCH' , # 00000927 'LABEL' , # 00000928 'LABEL')

'SKIP' # 00000930 'PROCEDURE' 'BEGIN'

'DEC # 00000914 'RESULT' ;'
'DEC # 00000915 'LABEL' ;
'DEC # 00000916 'FORMAL' ;

'DEC # 00000917 'FORMAL' ;

'BEGIN'

00000915 'LABEL' : # 000C0916 'FORMAL' := # 00000916 'FORMAL' -

'GOTO' 'IF^ * 00000916 "FORMAL^ (= 0 •THEN"

dl 00000915 •LABEL^ 'ELSE'

'DEC
•DEC

'DEC
'DEC

'DEC

«
»

00000917 'FCRMAL'

'END'

'END' ;

'SKIP' * 00000929 'INTEGER' 'PROCEDURE' 'BEGIN'

•DEC # 00000908 •INTEGERS •RESULT^ ;

00000909 •REAL^ •ARRAY^ ;

00000910 •REAL^ ;

00000911 •FORMAL^

00000912 •FORMAL^

00000913 •FORMAL'

00000910 'REAL' := # 00000911 'FORMAL' ;

ALLOCATE (* 00000909 'REAL' 'ARRAY' , # 00000912 'FORMAL') ;

00000908 'INTEGER' 'RESULT' := 'IF' H 00000913 •FORMAL' (= 0 'THEN^

1 •ELSE^
ENTIER (# 00000910 •REAL^ • # 00000909 •REAL• •ARRAY^ (/ I /) • # 00000913 •FORMAL" J

• « 00000929 •II^TEGER^ •PROCEDURE^ I # 00000910 •REAL^ , # 00000909 •REAL^ 'ARRAY' , # 0000091!
'FCRMAL' - 1) ;

'RETURN' # 00000906 'INTEGER' 'RESULT^

•END^ ;

ALLOCATE 1 # 0000C926 •REAL^ •ARRAY^ , 1 , 2) ;

ALLOCATE (» 00000925 •REAL^ •ARRAY' , 1 , 2) ;

« 00000922 'INTEGER* := # 00000923 'INTEGER' := # 00000924 'INTEGER' := 10 ;

'FOR' M C0000921 'INTEGER' := 1 , 2 'DC

'BEGIN'

'DEC * 00000918 'LABEL' ;

« C0000918 'LABEL' : « 00000925 'REAL' 'ARRAY' (/ # 00000921 'INTEGER' /) := 3 . 14159
/ « OC00C921 'INTEGER*

•END' ;

« 00000921 'INTEGERS := 3 ;

00000921 -INTEGERS := # 00000929 •INTEGERS 'PROCEDURE^ (# 00000925 •REAL^ •ARRAY^ {/ 2 I)
, « 00000925 •REAL^ •ARRAY' , # 00000921 'INTEGERS) ;

» 00000927 •LABELS : •BEGIN^

•DEC^ # 00000919 •REAL^ •ARRAY^ ;

ALLOCATE (# 00000919 •REAL' 'ARRAY^ , 1 , # 00000922 'INTEGERS , 1 , # 00000923 •INTEGERS
, - 2 * # 00000924 •INTEGERS , 2 • # 00000924 •INTEGERS) ;

00000919 •REAL^ •ARRAY^ (/ 1 , 1 , 0 /) := 1

•END* ;

« C0CCC930 'PROCEDURE^ (» 00000921 •INTEGERS , # 00000931 •SWITCH^ (/ 2 /)) ;

• 00000928 'LAEEL^ :

'ENC^

208 (6.2)

The second example program is designed to illustrate the imple

mentation of the Algol 60 identifier scope rules. It consists of

roughly the same pair of statements, an assignment statement and

a go to statement, repeated in various blocks. Some of these blocks

are contained in others, and some are parallel to others; all contain

redeclarations of some of the identifiers appearing in the pair

of statements, thus illustrating the various static scopes for

variables and labels. Note that one identifier, Z in the assignment

statement between the third and fourth blocks, is used outside the

scope of any of its declarations, and hence appears undenoted in

the transformed program.

The scope rule demonstration program, first in its original

form, and then after transformation, is:

'BEGIN'

'REAL' A ;

•INTEGER' B ;

'BCCLEAN' C ;

•ARRAYS 0 1 / 1 : 2 /) ;

'INTEGER' 'ARRAY' E (/ I : 2 /)

Ll : A := B • ('IF^ C •TFEN^

D (/ 1 /) •ELSE^

E (/ 2 /)) ;

•IF^ •FALSER •THEN^

•GCTO^ Ll ;

•BEGIN*

•REAL* A ;

•INTEGER* B ;

A := B + (•IF* C •THFN^

D (/ I /) •ELSE^

E (/ 2 /)) ;

•IF* *FALSE* "THEN*

•GCTO^ Ll ;

•BEGINS

•REAL^ A ;

•BOOLEAN* C ;

REAL Z ;

Ll : Z := A := B + (*IF' C "THEN*

0 (/ 1 /) •ELSE^

E (/ 2 /)) ;

•IF^ 'FALSER •THEN^

•GOTO^ Ll

•END* ;

Ll : Z := A := B • (•IF^ C •THEN^

D (/ 1 /) •ELSE^

E (/ 2 /)) ;

•IF* *FALSE* *THEN*

•GCTO* Ll ;

'BEGIN*

*REAL' A ;

'ARRAY' D (/ 1 : 2 /) ;

'PEAL' Z ;

Z := A := B + (' IF* C *THEN*

0 (/ 1 /) 'ELSE'

E (/ 2 /)) ;

'IF' 'FALSE' 'THEN*

•GOTO^ Ll

•END^

'END* ;

A := B + (*IF' C "THEN^

C 1/ 1 /) •ELSE^

E (/ 2 /)) ;

•IF* •FALSER 'THEN^

•GCTO^ Ll

'END*

•BEGIN'

•CEC # 00000902 'REAL^ :

•DEC # CCCC0903 'INTEGER' ;

'OEC^ # 00000904 'BOOLEAN' ;

•DEC # 0OC00905 •REAL' 'ARRAY^ ;

•DEC^ # 00000906 •INTEGERS •ARRAY^ ;

•DEC # 00CC09O7 •LABEL^ ;

ALLCCATE (# 00000906 •INTEGERS •ARRAY^ , 1 , 2) ;

ALLOCATE I # 00000905 •REAL' 'ARRAY^ , 1 , 2) ;

C0000907 •LABELS : # 00000902 •REAL^ := # 00000903 •INTEGERS + (•IF^ # 00000904 •BOOLEAN^
•THEN^

00000905 •REAL' 'ARRAY^ {I 1 /) •ELSE^

C000C906 •INTEGERS •ARRAY^ (/ 2 /)) ;

•IF^ 'FALSER •THEN^

•GCTO^ # 00000907 •LABEL• ;

•BEGINS

•DEC^ # 00000899 •REAL^ ;

•CEC # 00000900 •INTEGERS :

•DEC^ tt 00000901 'LABEL^ ;

« C0000899 •REAL^ := # OOOC0900 'INTEGERS • (•IF^ # 00000904 •BOOLEAN^ •THFN^

« 00000905 'REAL^ •ARRAY" {/ 1 /) "ELSE"

f* 00000906 •INTEGERS •ARRAY^ (/ 2 /)) ;

•IF^ •FALSE^ •THEN^

•GOTO* # 00000901 •LABEL^ ;

•BEGINS

•DEC^ # 00000892 •REAL^ ;

•DEC^ # 00000893 •BOOLEAN^ ;

•DEC^ # 00000894 •REAL^ ;

•DEC* # 00000895 'LAOEL^ ;

• (• I F ^ # OOOOOSgf ^ C O L E A N I •T*U£N°°°°^'"' ' " " ' - • '•' * ° ° ° ° ' " ' ' ' 2 '"EAL^ := # 0 0 0 0 0 9 0 0 •INTEGERS

» 00000905 •REAL^ 'ARRAY^ < / I /) •ELSE•

tt 00000906 •INTEGER* •ARRAY' (/ 2 /)) ;

' I F ' 'FALSE* 'THEN'

'GOTO' * 00000895 'LABEL'

'END' ;

•BOOLEAN'°?THEN?^ 'LABEL' : Z := # 00000899 'REAL' := « 00000900 'INTEGER' • I 'IF' # 00000904

n COC00905 'REAL' 'ARRAY' {/ 1 /) 'ELSE'

COCC0906 'INTEGER' 'ARRAY^ (/ 2 /)) ;

•IF^ •FALSE' 'THEN'

'GOTO' # 0OOOC9CI 'LABEL' ;

'BEGIN'

'DEC tt 00000896 'REAL' ;

'DEC # 00000898 'REAL' 'ARRAY' ;

'DEC * 00000897 'PEAL^ ;

ALLOCATE (* 000CC898 •REAL^ •ARRAY^ , 1 , 2) :

•BOOLEAN' 'THEN?°°°^''^ • REAL • := It 00000896 •REAL^ := tt 00000900 •INTEGER' + I 'IF' # 00000904

00000898 "REAL" "ARRAY" (/ 1 /) "ELSE"

00000906 "INTEGER" "ARRAY" (/ 2 /)) ;

•IF^ •FALSER •THEN^

'GOTO^ # 00000901 •LABEL^

'END'

'END' ;

tt 00000902 'REAL' := tt 00000903 •INTEGERS + ('IF^ # 000009C4 •BOOLEAN' 'THEN'

00000905 'REAL' 'ARRAY' 1/ 1 /) 'ELSE'

tt CCCCCSC6 'INTEGER' 'ARRAY* (/ 2 /)) ;

'IF' 'FALSE' 'THEN'

•GOTO' # 00000907 'LABEL'

'END'

(6.3) 215

6.3 For Statement Optimization Examples

In this section are presented three examples of the application

of the transformation set sequence consisting of the identifier

denotation transformation set followed by the for statement opti

mization transformation set. The first two examples are intended

to illustrate certain aspects of the operation of the for statement

optimization transformation set, while the last is intended to show

the denotation and optimization of a typical simple Algol program,

one which evaluates a polynomial.

The first example program demonstrates the detection of for

statements which must not be optimized. Considering the for state

ments in order, the reasons they may not be optimized are: The

first statement (in procedure P) contains a formal parameter. (See

the call to P at the end of the program, which gives rise to side

effects on i.) In the second, the loop variable is not a simple

integer. In the third, the loop variable is assigned in the controlled

statement (cf. example 1.1.3(10)). The fourth and fifth for statements

contain step-expressions which involve the loop variable and a

variable assigned, respectively. The sixth statement (cf. example

1.1.3 (13)) contains a procedure call (which in this case does produce

side effects on i). The seventh for statement illustrates the

operation of the transformations for multiple for list elements,

arithmetic-expression-elements, and while-elements.

The first example program and its transformed form are:

'BEGIN'

'INTEGER' 'PROCEDURE' STEP ;

STEP ;= I := I + 1 ;

•PROCEDURE' P I X) ;

•FOR' I := 1 'STEP^ 1 •UNTIL^ N •DC^

A (/ I /) ;= 2 * X ;

'INTEGER' 'ARRAY' Z (/ 1 : 10 /) ;

'ARRAY' A (/ 1 : 10 /) ;

•INTEGER' I , J , K , N ;

N := IC ;

I := J := K := I ;

•FOR* Z (/ I /) := 1 *STEP* 1 *UNTIL* N 'DO^

A (/ Z 1/ I /) /) := 2 * Z (/ I /) ;

FCR I := I *STEP* 1 *UNTIL* N *D0*

•BEGIN*

A (/ I /) := 2 * I ;

I := I • 1

•END* ;

FCR I := 1 *STEP* J + I * K *UNTIL* N •DO^

A (/ I /) := I ;

•FCR' I := 1 *STEP* J + Z (/ 3 /) • K *UNTIL" N "DO"

Z 1/ I /) := I ;

•FOR* I := 1 *STEP* 1 *UNTIL" N "DC"

•BEGIN*

A (/ I /) := 2 * I ;

STEP

'END^ ;

•FCR^ I := I , I • 1 •WHILES I (= N •DO'

A (/ I /) := 2 • I ;

P (STEP »

•END*

•BEGIN'

•CEC^ # 00000943 •INTEGERS •PRCCEDURE^

•DEC^ * CC000944 •PROCEDURE^ ;

•OEC^ tt 00000941 •INTEGERS •ARRAY' ;

•DEC^ # C0000942 •REAL' 'ARRAY' ;

'OEC # 00000937 'INTEGER'

'DEC # 00000938 •INTEGERS

•DEC^ # C0000939 "INTEGER"

"DEC # 00000940 "INTEGER'

'SKIP' tt C0000944 "PROCEDURE" "BEGIN"
'DEC tt 00000935 "RESULT" ;
"DEC tt 00000936 "FORMAL" ;

'BEGIN'

"DEC" tt 00000945 'LABEL' ;

« 00000937 'INTEGER' := 1 ;

» C0000945 "LABEL" : 'IF' * 00000937 'INTEGER' (= (# 00000940 'INTEGER') 'THFN'

'BEGIN'

tt 00000942 'REAL' 'ARRAY' (/ # 00000937 'INTEGER' I) : = 2 * tt 00000936 'FORMAL'

00000937 'INTEGER' := # 00000937 'INTEGER" + I ;

'GOTO' # 00000945 'LABEL'

'END'

'END'

•END' ;

'SKIP' It 00000943 'INTEGER' 'PROCECURE' 'BEGIN'

'DEC # 00000934 'INTEGER* 'RESULT" ;

« C0000934 "INTEGER" "RESULT^ ,: = tt 00000937 •INTEGER' := tt 00000937 ' INTEGER' • 1 ;

'RETURN' # 0 0 0 0 0 9 3 4 ' INTEGER' 'RESULT"

'END' ;

ALLCCATE (# 00000942 'REAL" "ARRAY" , 1 , 10) ;

ALLOCATE (# 00000941 "INTEGER" "ARRAY^ , 1 , 10) :

CC0CC940 •INTEGERS := 10 ;

« 00000937 •INTEGERS := « C0000938 'INTEGERS := # 00000939 -INTEGER- := 1 ;

•BEGINS

•OEC^ tt 00000946 "LABEL" ;

* 00000941 "INTEGER" "ARRAY" (/ # 0000C937 "INTEGERS /) : = ! ;

tt CCC00946 'LABEL* : *IF* # 00000941 "INTEGER" "ARRAY" (/ tt 00000937 "INTEGERS /) (= t
« 00000940 •INTEGERS) "THEN"

"BEGIN"

tt 00000942 "REAL" "ARRAY" (/ tt 00000941 " INTEGER" " ARRAY" (/ # 00000937 "INTEGFR" /)
/) := 2 • #00000941 "INTEGER" "ARRAY"'(/ # 00000937 "INTEGFR" /) ;

« 00000941 "INTEGER" "ARRAY" (/ # 00000937 "INTEGER" /) := # 00000941 "INTEGER" "ARRAY"
(/ # 00000937 "INTEGER" /) + 1 ;

•GOTO^ # 000C0946 •LABEL^

•END^

•END^ ;

•BEGINS

•OEC^ # 00000947 •LABEL^ :

CCC00937 •INTEGERS := 1 ;

C0000947 •LABELS : •IF^ tt 00000937 •INTEGER" (= (# 00000940 "INTEGER") "THEN"

•BEGINS

•BEGINS

tt 00000942 •REAL' 'ARRAY' (/ tt 00000937 'INTEGER' /) := 2 * # 00000937 'INTEGER"
5

00000937 'INTEGER' := # 00000937 'INTEGER* + 1

'END' ;

tt 0C0O0937 'INTEGER' := # 00000937 'INTEGER' + 1 ;

'GOTO' # 00000947 'LABEL'

'END'

'END' ;

'BEGIN'

'DEC tt 00000948 'LABEL' ;

tt 00000937 "INTEGER" := 1 ;
00000948 •L\BEL' : 'IF' (# 00000937 'INTEGER" - { # 00000940 "INTEGER")) * SIGN (

00000938 'INTEGER' + tt 00000937 'INTEGER' * tt 00000939 'INTEGER') (= 0 'THEN'

'BEGIN'

00000942 'REAL' 'ARRAY' 1/ tt 00000937 'INTEGER" /) := tt 00000937 "INTEGER" ;

00000937 "INTEGER" := tt 00000937 'INTEGER' • (tt 00000938 'INTEGER' • # 00000937
'INTEGER' * # C0000939 "INTEGER") :

'GOTO' tt 00000948 'LABEL'

'END'

'END' ;

'BEGIN'

'DEC tt 00000949 'LABEL' ;

tt 00000937 'INTEGER' := I ;

CCCCC949 'LABEL" : "IF" 1 # 00000937 "INTEGFR" -.<«,0"000940 "INTEGER •)) * ^IGN I
00000938 "INTEGER" • # 00000941 -INTEGER" "ARRAY" (/ 3 /) • # 00000939 "INTEGER") (= 0 "THEN"

"BEGIN"

tt 00000941 "INTEGER" "ARRAY' (/ # 00000937 'INTEGER' /) := # 00000937 'INTEGER' :

00000937 "INTEGER" := # COO0Q937 "INTEGER' • (# 00000938 'INTEGER' • # 00000941
'INTEGER' 'ARRAY' (/ 3 /) * # 00000939 "INTEGER") ;

"GOTO" tt 00000949 "LABEL"

"END"

"END" :

"BEGIN"

"DEC" # 00000950 "LABEL" :

« 00000937 "INTEGER" := 1 ;

CCCC0950 "LABEL" : "IF" # 00000937 "INTEGER" (= (# 00000940 "INTEGFR") "THEN"

"BEGIN"

"BEGIN"

tt 00000942 "REAL" 'ARRAY' (/ # 00000937 'INTEGER' /) := 2 * # 00000937 'INTEGER'

00000943 "INTEGER" "PROCEDURE"

'END' ;

00000937 'INTEGER' := # 00000937 'INTEGER' • I ;

'GOTO" # 00000950 "LABEL"

"END"

"END" ;

"BEGIN"

•DEC" # 00000951 "PROCEDURE" ;

"SKIP" # 00000951 "PROCEDURE" "BEGIN"

•DEC # 00000952 "RESULT" ;

00000942 "REAL" "ARRAY" (/ » 00000937 "INTEGER" /) := 2 * # 00000937 "INTEGER"

'END' :

'BEGIN"

tt C0000937 "INTEGER" := 1 ;

00000951 "PROCEDURE"

'END' :

'BEGIN'

"DEC # 00000953 "LABEL" :

tt 00000953 "LABEL" : # 00000937 'INTEGER' := tt 00000937 'INTEGER' • I ;

'IF' tt 00000937 'INTEGER' (= # 00000940 'INTEGER' 'THEN'

'BEGIN'

00000951 'PROCEDURE' ;

'GOTO' # 00000953 'LABEL'

'END'

'END'

'END' ;

CO00C944 'PROCEDURE' (# 00000943 'INTEGER' 'PROCEDURE')

'END'

(6.3) 223

The second example program illustrates various forms of opti-

mlzable for statements and the detection of general, linear, and

constant subscripted variables within such statements. Considering

the for statements in order, the points illustrated are: The first

may now be optimized (cf. the previous example) because the parameter

X is called by value, hence no side effects can arise. The second

illustrates a simple optimizable for statement containing one linear

subscripted variable. The third and fourth for statements are optimi

zable, but in each the until-expression must not be calculated in

advance because it contains the loop variable (cf. example 1.1.3 (9))

and a variable assigned (cf. Transformation 9, section 1.1.3), respec

tively. The fifth statement contains some subscripted variables

which are general (not optimizable) because they contain variables

assigned (cf. example 1.1.4 (14)). In the sixth statement a sub

scripted variable is declared within the controlled statement, while

in the seventh several subscripted variables have non-linear subscripts;

all of these must not be optimized. The eighth statement illustrates

that a for statement and subscripted variable containing complicated

expressions may still be optimizable.* Finally the last pair of

for statements illustrates optimization of nested for statements

(cf. the discussion in section 3.2).

The second example program is listed below, first in its original

form, and then after transformation. The program is expanded consid

erably during transformation, largely as a result of for statement

optimization.

*The redeclaration of serial numbers in the optimized form of this state
ment (cf. p. 237) arises from the use of rplaod to add generable symbols
to the environment as discussed in section 2.5.2. The solution proposed

•BEGIN'

'INTEGER' 'PROCEDLRE' STEP ;

STEP := I := I • 1 ;

'PROCEDURE' P I X) ;

•VALUE' X ;

•INTEGER' X ;

•FOR' I := 1 'STEP' 1 'UNTIL' N 'DC

A (/ I /) := 2 * X ;

'INTEGER' 'ARRAY' Z (/ 1 : ICO , 1 : 100 /) ;

'ARRAY' A , B , C (/ 1 : ICC /) ;

'INTEGER' I , J , K , N ;

•REAL' REAL ;

REAL := 3 . 14159 ;

N := 10 ;

I := J := K := 1 ;

•FCR' I := 1 'STEP' 1 'UNTIL' N 'DO'

A (/ I /) := 2 • I ;

•FOR' I := 1 •STEP^ 1 'UNTIL' N * I - 7 'DO'

A (/ I /) := 2 • I ;

•FOR* I := 1 *STEP' • 1 'UNTIL* N • A {/ 1 /) - 7 *D0*

A (/ I /) := 2 * I ;

•FCR' I := 1 •STEP' I 'UNTIL' N 'DO'

•BEGIN'

J : = N - I ;

C I / A (/ K /) /) : = ! ;

A (/ I /) : = B (/ J /)

'END* ;

' F O R ' I : = 1 ' S T E P * 1 * U N T I L * N ' D O '

' B E G I N *

A (/ I /) : = I :

• B E G I N *

•ARRAY' A (/ 1 : I /) ;

A (/ I /) := B 1 / I /)

' E N D '

' E N C ;

•FCR' I : = 1 • S T E P ' 1 ' U N T I L ' N •DC^

•BEGINS

A { / I * I /) := A (/ I /) ;
A (/ REAL * I + 1 /) : = A (7 • I F • I (5 •THEN^

1 •ELSE^

I - 3 /)

•ENC^ ;
' F C R ' I := 3 * J • CCS (K I ' S T E P ' COS (REAL) ' U N T I L ' J * N ' 0 0 '

Z 1 / CCS (REAL) + J , K * I + J /) ••= I ;

•FOR. I : = I ' S T E P ' 1 ' U N T I L ' N ' D C

'FCR* J : = 1 ' S T E P ' 1 ' U N T I L ' 2 * I - N ' D C

Z (/ 1 , 1 /) ••= Z (/ I . 1 / I • ^ </ 1 • J ' ' - ^ ' / ' ' -J ^' '

P (S T E P)

' E N D '

•BEGIN'

'DEC

'CEC

•CEC*

*OEC'

•CEC

'DEC*

•DEC*

«
tt

It

tt

it

t

CCCCC9C6

G0000907

00000902

CCCCC9C3

00000904

00000905

00000897

DEC # 00000898

•DEC tt 00000899

INTEGER* *PROCEDURE*

PROCEDURE' ;

INTEGER' 'ARRAY' ;

REAL' 'ARRAY'

REAL' 'ARRAY'

REAL' 'ARRAY'

INTEGER' ;

INTEGER' ;

INTEGER' ;

'CEC » 00000900 'INTEGER' ;

'DEC # C0CC0901 'REAL' ;

'SKIP' # 00000907 'PROCEDURE' 'BEGIN'

•DEC # 00000893 'RESLLT' ;

'DEC tt 00000894 'INTEGER' ;

•DEC # 00000895 'FORMAL' ;

tt CC00C894 'INTEGER' := # 0000CB95 'FORMAL' ;

'BEGINl'

•DEC # 000C09C8 'LABEL' ;

•DEC tt 000009C9 'INTEGER'

•DEC tt 00000910 'INTEGER'

'DEC # 00000911 'INTEGER'

'BEGIN'

/) ;

tt 00000897 'INTEGER' := I ;
00000909 'INTEGER' ..= * 00000900 'INTEGER'

•END' :

•BEGIN'

00000910 'INTEGER' •.= 'REF' # OO0C0903 'REAL' 'ARRAY' •(/I• # 00000897 "INTEGFR'

"END" ;

» 00000897 'INTEGER* •.= # 00000897 'INTEGER" + 1 ;
•BEGIN"

00000911 "INTEGER" ..= "REF" tt 00000903 "REAL" "ARRAY" "I/l" # 00000897 •INTEGERS
/) - # 00000910 'INTEGERS ;

•END" ;

00000897 "INTEGER" ..= H 00000897 "INTEGER" - 1 ;

00000908 "LABEL" : "IF" # 00000897 "INTEGER" (= # 00000909 "INTEGER" "THFN"

•BEGIN'

"VAL" # 00000910 "INTEGER" ..= 2 * # 00000894 "INTEGER" ;

tt 00000910 "INTEGER" . .= # 000009 10 "INTEGER" • tt 00000911 "INTEGER" ;

00000897 "INTEGER" ..= # 00000897 "INTEGER" + 1 ;

"GOTO" H 00000908 "LABEL"

"END"

"END"

"END" ;

"SKIP" # 00000906 "INTEGER" "PROCEDURE" "BEGIN"

1

1

1

1

, 100)

, 100)

, 100)

I , 100

/)

•DEC^ # 00000892 •INTEGERS •RESULT^ ;

C0000892 •INTEGER" •RESULT^ := # 00000897 •INTEGERS := # 00000897 •INTEGER- • 1 ;

•RETURN' tt 00000892 'INTEGER' 'RESULT*

•END* ;

ALLCCATE I « 00000905 *REAL* 'ARRAY^

ALLOCATE (# 00000904 •REAL^ •ARRAYS

ALLCCATE (# 00000903 •REAL^ •ARRAY'

ALLOCATE (# 000009C2 'INTEGER' 'ARRAY' , I , 100 , 1 , 100) .

« 00000901 'REAL' := 3 . 14159 ;

000CC9CC 'INTEGER' := 10 ;

00000897 'INTEGER' := « C0000898 'INTEGER' := # 00000899 'INTEGER' := 1 ;

'BEGINl'

'DEC tt 00000912 •LABEL^ :

•DEC^ # 00000913 •INTEGERS

•DEC^ # 00000914 •INTEGERS

•DEC^ tt 00000915 •INTEGERS

•BEGINS

00000897 •INTEGERS := I ;

« 00000913 'INTEGER' ..= tt 00000900 'INTEGER'
•END' ;

•BEGIN'

00000914 'INTEGER' ..= 'REF' « 00000903 'REAL' 'ARRAY' 'I/l' # 00000897 'INTEGER'

•END'

00000897 'INTEGER' ..= # 00000897 -INTEGERS • 1 ;

•BEGINS
00000915 •INTEGERS ..= •REF^ # 00000903 •REAL^ •ARRAY^ •!/!• # 00000897 •INTEGERS

n - It 00000914 'INTEGER" ;

"END" ;

CC00C897 "INTEGER* ..= # C0000897 'INTEGER' - 1 ;

00000912 'LABEL' : 'IF' # 00000897 'INTEGER' (= # 00000913 'INTEGER' 'THEN'

'BEGIN'

•VAL' # 00000914 'INTEGER' ..= 2 * # 00000897 'INTEGER' ;

00000914 'INTEGER' . •= # 00000914 'INTEGER' • # 00000915 'INTEGER' ;

tt 00000897 'INTEGER' ..= # 00000897 'INTEGERS + I ;

'GOTO' # 00000912 'LABEL'

'END'

'END' :

'BEGINl'

•CEC # 00000916 •LABEL* ;

0EC # C0000918 'INTEGER* ;

•DEC tt 00000919 'INTEGERS ;

•BEGINS

CC000897 •INTEGER' := I

'END' ;

'BEGIN'
00000918 ' INTEGER' . .= ' R E F ' # 00000903 'REAL ' 'ARRAY* ' I / l ' # 0 0 0 0 0 8 9 7 ' INTEGER'

/) ;

"END" ;

CCC0C897 "INTEGER" ..- # 00000897 "INTEGER" • 1 :

•BEGIN"
« 00000919 "INTEGER" ..= 'REF' « 00000903 "REAL" "ARRAY" "(/I" * 00000897 "INTEGER"

/) - # 00000918 "INTEGER" ;

"END" :

I C0000897 "INTEGER" ..= # 00000897 "INTEGER" - 1 ;

OOO0C916 "LABEL" : " IF" # 00000897 "INTEGER" (= (# 00000900 "INTEGER" * » 00000897 "INTEGER"
- 7) "THEN"

"BEGIN"

•VAL^ # 00000918 •INTEGERS ..= 2 * # 00000897 •INTEGER* ;

« GC000918 "INTEGER* ..= # 00000918 'INTEGER' • » 00000919 "INTEGER" ;

00000897 "INTEGER" . .= # 00000897 "INTEGER" «• I ;

•GOTO" # 00000916 "LABEL"

"END"

•END" ; ,

"BEGINl*

DEC # 00000920 *LABEL" :

"DEC" # 00000922 "INTEGER" :

•OEC" # 00000923 "INTEGER" ;

"BEGIN"

00000897 "INTEGER" := 1

•END^ ;

n i

•BEGINS

0C000922 'INTEGERS ..= •REF^ # 00000903 "REAL" 'ARRAY' "I/l" # 00000897 "INTEGER*

"END" ;

00000897 "INTEGER' ..= # 00000897 'INTEGER' + 1 ;

•BEGIN'

CC000923 'INTEGERS ..= •REF' tt 00000903 'REAL" "ARRAY^ •(/!• # 00000897 •INTEGERS
/) - # 00000922 •INTEGER* ;

•END^ ;

00000897 •INTEGER' . .= tt 00000897 "INTEGER" - 1 ;

« CC0C0920 "LABEL" : "IF" (00000897 "INTEGER" (= (# 00000900 "INTEGERS * # 00000903 •RFAL^
'ARRAY' (/ 1 /) - 7) 'THEN'

'BEGIN'

'VAL' # 00000922 'INTEGER' ..= 2 * # 00000897 'INTEGER' :

00000922 'INTEGER' -.= # 00000922 'INTEGER' • # 00000923 'INTEGER' ;

00000897 "INTEGER' ..= « 00000897 'INTEGER' + 1 ;

'GOTO' # 00000920 'LABEL'

'END'

'END' ;

'BEGINl'

'DEC # 00000924 'LABEL' ;

'DEC # 00000925 'INTEGER' ;

•DEC # 00000926 •INTEGERS ;

/) :

•DEC f 00000927 •INTEGERS ;

•OEC # 00000928 •INTEGERS ;

•BEGINS

« 00000897 •INTEGERS := 1 ;

« 00000925 •INTEGERS ..= # 00000900 •INTEGER'

•ENO^ :

•BEGINS
00000928 -INTEGERS -.= •REF^ # 00000903 •REAL^ •ARRAY^ (/ # 00000899 •INTEGERS /)

« 00000926 •INTEGERS ..= •REF^ # 00CCC9C3 •REAL' 'ARRAY' 'I/l' # 00000897 'INTEGER'

'END' :

« CC000897 'INTEGER' ..' # 00000897 'INTEGER' • 1 ;

•BEGIN'

00000927 'INTEGERS ..= •REF^ # 00000903 •REAL^ •ARRAY^ •l/l^ # 00000897 'INTEGERS
It - It 00000926 •INTEGERS ;

•END' ;

t CCC00897 'INTEGERS ..= # 00000897 •INTEGERS - 1 ;

« 00000924 •LABELS : •IF^ « 00000897 •INTEGER* (= # 00000925 'INTEGER* *THEN'

'BEGIN*

BEGIN

00000898 * INTEGER* := # 00000900 'INTEGER' - # 00000897 'INTEGER' ;

« 00000905 'REAL' 'ARRAY' 'I/l' 'VAL' # 00000928 'INTEGER' /) := # 00000897 'INTEGER'

/)

/) ;

/) ;

'VAL' # O0O0C926 'INTEGER' ..= # 00000904 'REAL' 'ARRAY^ •(/!• # 00000898 -TNTEGER-

•END^ ;

00000926 "INTEGER" ..= # 00000926 "INTEGER" + » 00000927 "INTEGER" ;

00000897 "INTEGER" ..= # 00000897 "INTEGERS • 1 ;

"GOTO" n 00000924 "LABEL"

"END"

•ENO^ :

•BEGINl*

•DEC^ # 00000929 •LABEL^ ;

•OEC^ tt 00000930 •INTEGER*

•DEC # 00000931 "INTEGER"

"DEC # 00000932 "INTEGER"

"DEC" tt 00000933 "INTEGER"

•DEC^ # 00000934 •INTEGER*

'BEGIN'

CC000897 'INTEGER' := 1 :

tt 00000930 'INTEGER' . .= « 00000900 'INTEGER'

'END' ;

'BEGIN'

« 00000933 'INTEGERS ..= •REF^ # 00000904 •REAL^ "ARRAY" •(/!' # 00000897 •INTEGERS

tt 00000931 •INTEGERS .= "REF" # 00000903 "REAL" "ARRAY" "(/l" # 00000897 "INTEGER"

"END"

• CC000897 •INTEGERS ..= tt 00000897 'INTEGER' • I ;
'BEGIN'

00000934 'INTEGER' . .= 'REF' tt 00000904 'REAL' 'ARRAY' '(/l' * 00000897 'INTEGER'
/) - « 00C0C933 'INTEGER' ;

00000932 'INTEGER' .-= 'REF' « 00000903 'REAL' 'ARRAY' 'III' It 00000897 'INTEGER'
I) - It 00C00931 • INTEGER' ;

•END' ;

00000897 'INTEGER' . .= # 00000897 'INTEGER' - I ;

tt 00000929 'LABEL' : 'IF' # 00000897 'INTEGER' (= # 0000093C 'INTEGER' 'THEN'

'BEGIN'

'BEGIN'

'VAL' # 00000931 'INTEGERS . .= # 00000897 •INTEGERS :

'BEGIN'

'DEC # 0CCCC896 'REAL^ •ARRAY' ;

ALLOCATE (tt 00000896 'REAL' 'ARRAY' , I , # 00000897 'INTEGER') ;

tt 00000896 'REAL' 'ARRAY' '(/I' « 00000897 •INTEGERS /) := •VAL^ « 00000933
•INTEGERS

•END^

•END' ;

00000933 •INTEGERS -.= tt 00000933 'INTEGER' + # 00000934 'INTEGER'

CCC00931 'INTEGER' ..= tt 00000931 'INTEGER' + « 00000932 'INTEGER'

00000897 'INTEGER' ..= # OC000897 'INTEGER' + 1 ;

'GOTO' # 00000929 'LABEL'

'END'

'END'

'BEGI

/) :

Nl^

•DEC^ # 00000935 •LABEL^ ;

•DEC^ tt 00000936 •INTEGER"

'OEC^ # 00000937 •INTEGERS

"DEC" # 00000938 "INTEGER"

"BEGIN"

C0C0C897 "INTEGERS := 1 ;

00000936 •INTEGERS ..= # 00000900 •INTEGERS

•ENO^ ;

"BEGIN"

tt C0C00937 "INTEGER" ..= "REF" # 00000903 •REAL^ •ARRAY^ •l/l^ # 00000897 •INTEGERS

.•END^ ;

00000897 •INTEGERS ..= # 00000897 •INTEGERS t 1 ;

•BEGINS

00000938 •INTEGER* ..= *REF' # 00000903 •REAL^ •ARRAY^ 'ill' « 00000897 •INTEGERS
/) - # 00C00937 •INTEGERS ;

•END^ ;

CCC0C897 •INTEGERS . . = # 00000897 •INTEGERS - 1 ;

tt 00000935 •LABELS : • I F ^ # 0000C897 •INTEGERS (= tt 00000936 •INTEGERS •THEN^

•BEGINS

•BEGINS

00000903 •REAL" "ARRAY" "(/I' # 00000897 "INTEGER" * « 00000897 "INTFGFR- /)
'VAL- # 00000937 -INTEGER- ;

00000903 -REAL- -ARRAY- -(/I- It 00000901 -REAL- * « 00000897 -INTEGFR- + 1 /)
00000903 -REAL- "ARRAY" "(/l- -IF- It C0000897 -INTEGER- (5 "THEN"

1 "ELSE-

00000897 •INTEGER-

-END- ;

00000937 - INTEGER- . . =

00000897 -INTEGER- . . =

'GOTO- H C00CC935 -LABEL-

"END"

- 3 /)

00000937 "INTEGER" •• # 00000938 "INTEGER" ;

H 0C000897 "INTEGER" + 1 ;

"ENC" ;

"BEGINl"

"OEC"

•DEC"

•DEC"

"DEC"

00000939 "LABEL" ;

000009'iO " INTEGER"

00000941 'INTEGER"

00000939 -INTEGER-

-DEC- # C0000940 -INTEGER"

-BEGIN"

CC000897 'INTEGER- :

H C000094C 'INTEGER- .

C0000941 - INTEGER" .

"END" ;

"BEGIN"

00000939 -INTEGER"
•REAL") + # 00000898 -INTEGER- ,

= 3 * # 00000898 'INTEGER- • COS (# 00000899 -INTEGER-)

.= COS (# 00000901 'REAL-) ;

.= # 00000898 'INTEGER- * « 00000900 "INTEGERS

..= 'REF^ # C0000902 -INTEGER- -ARRAY- "(/I" CDS (« 00000901
00000899 "INTEGER" * # 00000897 "INTEGER" + # 00000898 -INTEGER"

/) ;

-END- ;

00000897 -INTEGER- . ,= tt 00000897 -INTEGER" • tt 00000940 -INTEGER- ;

•BEGIN-

« 00000940 -INTEGER" ..= "REF" # 00000902 "INTEGFR" "ARRAY" "(/I- COS (# 00000901
•REAL^) + # 00000898 'INTEGERS , # 00000899 •INTEGER- * # 00000897 -INTEGER' + # 0000089B -INTEGFR-
/) - # 00CC0939 -INTEGER' ;

•END^ ;

00000897 •INTEGER* . .= tt 00000897 •INTEGERS - # 00000940 •INTEGERS ;

« 00000939 •LABEL- : -IF- i It 00000897 -INTEGER- - # 00000941 -INTEGER-) * SIGN (# 00000940
•INTEGER-) <= 0 "THEN-

•BEGIN^

"VAL" # 00000939 "INTEGER" ..= tt 00000897 "INTEGER" ;

00000939 "INTEGER" ..= # 00000939 "INTEGER" • # 00000940 •INTEGERS :

00000897 •INTEGER* . .= H 00000897 'INTEGERS + # 00000940 "INTEGER" ;

"GOTO" # 00000939 "LABEL"

"END"

"END" ;

•BEGINl"

-DEC- # 00000950 -LABEL' ;

'DEC # 00000951 -INTEGER'

-DEC- # 00000952 •INTEGER'

'DEC # 00000953 'INTEGER'

•DEC^ » 00000954 •INTEGERS

1 /)

•BEGINS

00000897 •INTEGERS :

00000951 •INTEGERS .

•END^ ;

•BEGINS

« CC0C0954 •INTEGERS .

tt 00000952 •INTEGERS .

= 1 ;

. = # 00000900 •INTEGERS

•REF^ # 00000902 •INTEGER" •ARRAY' 1 / 1 , 1 /) ;

•REF^ # 00000902 •INTEGER- -ARRAY- - (/ I - # 00000897 -INTEGER-

•END^ ;

00000897 •INTEGER" . .= « 00000897 "INTEGER" • 1 ;

"BEGIN"

OOC00953 "INTEGER" . .= "REF" # 00000902 "INTEGER" "ARRAY" "(/I" tt 00000897 'INTEGERS
, ! /) - # C0000952 -INTEGER- ;

•END^ ;

00000897 •INTEGER*

CCCCC950 •LABEL' :

•BEGIN'

•BEGINl^

'DEC # 00000942 'LABEL' ;

'DEC^ # 0OOOC943 'INTEGERS

•DEC^ # 00000944 'INTEGER'

'DEC # 00000945 'INTEGER'

•DEC- # 00000946 -INTEGER-

.= # 00000897 -INTEGER- - 1

IF- tt O000C897 - INTEGER' (= # 00000951 -INTEGER- -THEN-

-DEC- # 00000947 -INTEGER'

'DEC # 00000948 'INTEGER*

'DEC H 00000949 'INTEGER'
'BEGIN'

tt 00000898 'INTEGER' := 1 :

00000943 'INTEGER' ..= 2 * # 00000897 'INTEGER' - # 00000900 'INTEGER'

-END' :
•BEGIN'

« 00000949 'INTEGER' ..= # 00000952 'INTEGER' ;

00000948 'INTEGER' ..= # 00000954 -INTEGER- ;

00000946 'INTEGER' ..= 'REF' # 00000902 'INTEGER' 'ARRAY' '(/I' # 00000897
'INTEGER' , # 00000898 'INTEGER' /) ;

00000944 'INTEGER' ..= 'REF' # 00000902 'INTEGER' 'ARRAY' '(/I' 1 , # 00000898
'INTEGER' /) ;

'END' ;

tt 00000898 -INTEGER- ..= # 00000898 -INTEGER- + 1 ;

'BEGIN'
tt 00000947 'INTEGER' ..= 'REF' # 00000902 'INTEGER' 'ARRAY' '(/!• # 00000897

•INTEGERS , # 00000898 •INTEGERS /) - # 00000946 •INTEGERS ;

tt 00000945 •INTEGERS . .= •REF^ # 00000902 'INTEGERS •ARRAY^ 'ill' 1 , # 00000898
•INTEGERS n - tt 00000944 'INTEGER- ;

•ENO^ ;
000C0898 •INTEGERS . .= # 00000898 •INTEGERS - 1 ;

0O0CO942 •LABELS : •IF^ tt 00000898 'INTEGERS (= # 00000943 •INTEGERS •THEN^

•BEGIN"
•VAL^ # 000CC948 •INTEGER" ..= "VAL" # 00000949 "INTEGER" • 'VAL' « 00000944

'INTEGER' - 'VAL' # 00000946 'INTEGER' ;

CO0C0946 'INTEGER" ..= # 00000946 "INTEGER" • # 00000947 "INTEGFR" ;

« 00000944 "INTEGER" ..= # 00000944 "INTEGER" • # 00000945 "INTEGER" ;

« 00000898 "INTEGER" ..= # 00000898 "INTEGER" • I ;

'GOTO' # 00000942 'LABEL'

'END'

'END' ;

00000952 'INTEGER' . .= # 00000952 'INTEGER' + tt 00000953 'INTEGER' ;

« 00000897 'INTEGER' ..= # 00000897 'INTEGER' • I ;

'GOTO' # 00000950 'LABEL'

•END'

'END' ;

OO00C907 'PROCEDURE' I # 00000905 'INTEGER' 'PROCEDURE')

'END'

l i)-h
g K,

CL
fD
3
r t
H-
l-t̂
H-
O
f i

ftj
p
a
:r
(D
3

n
fD

n
C"
3
3
0
r t

00
H-

< (D

f^

i-h
O

3
CD
h--

T)
Q3
t-f
03
3
fD
r t
fD
ft

«
cr
(D

n
[U

c
tn
fD

3
fD
3
r t

«: H-
r r
rr
H-
3

r t

rr
(Tt

T>
>-{
O
O
fD

a
c
1-1
fD

H-
0)

a
T)
t-t
H-
3
p t
m
n
:J'
fD

a
CU
r t
(U

pl
3
CL

o
ft>
M
M
CA

f t
3 -
(D

3
m
r t
3 '
fD

13
O
h-'

^ 3
O
3
p -
CU
M

fD

< Q}
M
C
t"
r t
H-
O
3

i-h
O
i-(

T3
O
h-'

^ 3
o
3
M-
CU
h-'

fD

< CU
M
3
(U
r t

O
3

n
o
3
1

'BEGIN'

"REAL" "PROCEUURF" EVALUATFPCLYMOMI AL (F) OFOEGPFF

'VALUE' N , X :

'ARRAY' F ;

"REAL' X ;

" INTEGER" N ;

•BEGINS

• INTEGER' I ;

•REAL^ P ;

P := F (/ N /) ;

•FCR^ I := N - I •STEP^ - 1 •UNTIL^ 0 •DO^

p : = (P « X) + F (/ l /) ;

EVALLATEPCLYNOMIAL := P

'END' ;

•INTEGERS I , N ; '

•REAL^ F , X ;

READ (N) ;

PRINT (N) ;

•BEGINS

•ARRAY^ A (/ 0 : N /) ;

•FCR' I := N 'STEP' - I •UNTIL^ 0 'DC

•BEGINS

REAU (A {/ I /)) ;

(N) AT : (X)

PRINT (A (/ I /))

•END" ;

READ (X) ;

PRINT (X) ;

F := EVALUATEPOLYNCMIAL (A , N , X)

PRINT I F)

•END'

'END'

•BEGIN'

'DEC # 00000967 'REAL' 'PROCEDURE' ;

•DEC # 00000963 'INTEGER' ;

•OEC^ # C0000964 'INTEGER' ;

'CEC tt 00000965 'REAL' ;

•DEC tt 00000966 'REAL' ;

'SKIP' # C0000967 'REAL' 'PROCEDURE' 'BEGIN'

'DEC tt 00000956 'REAL' 'RESULT' ;

•DEC # 00000957 •INTEGERS ;

•OEC tt 0000095R 'RFAL^ ;

•DEC # 00000959 •FORMAL^

•DEC^ tt 00000960 •FORMAL^

•OEC tt 00000961 •FORMAL'

C0000958 'RFAL' := # CCC00961 'FORMAl' ;

tt 00000957 'INTEGER' := tt 00i)00960 'FORMAL^ ;

•BEGINS

•DEC^ # 00000954 •INTEGERS ;

•CEC^ # 000CC955 •REAL^ ;

CO0OC955 •RFAL^ := # 00000959 'FORMAL^ (/ tt 00000957 •INTEGERS /)

•BEGINl'

'DFC # 00Cr)C96B 'LABEL' ;

'DEC # 00000969 'INTEGER' ;

'DEC # 00000970 'INTEGFR' ;

/) ;

•DEC # 00000971 •INTEGER- ;

-BEGIN-

00000954 -INTEGER" := # 00000957 -INTEGER- - 1 ;

It 00000969 'INTEGER- ..= 0
-END- ;

-BEGIN-

000CC970 -INTEGER- ..= -REF- # 00000959 -FORMAL- -(/I- # 00000954 -INTEGERS

•END- ;

H 00000954 -INTEGER- ..= « 00000954 'INTEGER' - 1 ;

'BEGIN'

/) - # 00CC097O 'INTEGER?°?^^ -INTEGER' ..= -REF- # 00000959 -FORMAL^ ' i l l ' It 00000954 -INTEGER-

•END' ;

00000954 'INTEGER" ..= H 00000954 'INTEGER' + 1 ;

OOOC096fl 'LABEL- : -IF- n C00CC954 -INTEGER- >= # 0000096P 'INTEGER- 'THFN-
•BEGIN-

00000955 -REAL- := (# 00000955 -REAL- * * 00000958 -REAL-) + -VAL' # 00000970
•INTEGERS ;

H 00000970 -INTEGER- ..= It 00000970 -INTEGER- + # C0000971 -INTEGER- ;
C0000954 -INTEGER- ..= # 00000954 -INTEGER- - 1 ;

•GOTO- # 00000968 -LABEL-

-END-

-END-

/)

00000956 -REAL- •RESULT' := H C000C955 'RFAL'

•END^ ;

•RETURN^ # 00000956 'REAL' 'RESULT^

•END' ;

READ (H 00000964 'INTEGER') ;

PRINT (H 00000964 'INTEGER-) ;

•BEGIN"
•OEC^ # 00000962 -RFAL- -ARRAY^ ;
ALLOCATE (tl 00000962 -REAL- -ARRAY- , 0 , # 00000964 -INTEGER-)

-BEGINl-

-CEC- H 00000972 -LABEL- :

-OEC- # 00000973 -INTEGER-

'DEC # 00000974 'INTEGER'

'OEC « 00000975 -INTFGER-

-BEGIN-

« 00000963 -INTEGER- := # 00000964 -INTEGER- ;

* 00000973 -INTEGER- ..= 0

'END- ;

'BEGIN-
00000974 - INTEGER- •REF' # 00000962 'RFAL' -ARRAY- -t/1' « 00000963 - INTEGFR-

•END^ ;
00000963 -INTEGER- ..= H 00000963 -INTEGER- - 1 ;

•BEGIN'
00000975 'INTEGER' ..= 'REF- # 00000962 'REAL' 'ARRAY' •(/!' * 00000963 'INTEGER'

n - It C0C00974 'INTEGER' ;

'END' ;

C0000963 'INTEGER' ..= # 00000963 'INTEGER' + I :

C0000972 'LABEL^ : •IF^ # 00000963 'INTEGER' >= # 00000973 -INTEGER' 'THEN*

•BEGIN'

'BEGIN'

READ ("VAL" # 00000974 -INTEGER-) ;

PRINT (-VAL- # 00000974 'INTEGER')

•ENC^ ;

00000974 'INTEGER' ..= # 00000974 'INTEGER' + # 00000975 'INTEGER' ;

00000963 'INTEGER' ..= H 00000963 'INTEGERS - I ;

'GOTO' It C00CC972 'LABEL'

'END'

'END' ;

READ (# 00000966 -REAL') ;

PRINT I # 00000966 -PEAL-) 5

tt 00000965 'REAL- := # 00000967 'REAL- 'PROCEDURE- (# 00000962 -REAL' 'ARRAY^ , » 00000964
•INTEGER* , # 00000966 -REAL') ;

PRINT (It 00000965 -REAL')

•ENO^

'END'

ARGONNE NUTIONAL LAB WEST

lilllllll
Ill 'CWII

l4 oomm

